店舗・オフィス／ビル用 空調システム
関連資料・法規編

関連資料
(1) SI 単位換算表 ———— 1393
(2) 主要な従来単位と SI 単位との比較表 ———— 1393
(3) 空調システム計算の公式 ———— 1394
(4) 空気線図 ———— 1395
(5) 冷媒の飽和温度と飽和圧力表 ———— 1396
(6) 新冷媒機種施工時の注意事項 ———— 1397
(7) 冷媒漏洩に対する注意事項 ———— 1399
(8) 室外機 JRA 耐塩害仕様、耐重塩害仕様 ———— 1402

関連法規
(1) 建築基準法 ———— 1406
(2) 省エネルギー法（エネルギー使用の合理化に関する法律） ———— 1409
(3) APF（通年エネルギー消費効率）について ———— 1414
(4) ビル管理法 ———— 1417
(5) 騒音規制法 ———— 1419
(6) 振動規制法 ———— 1421
(7) 高圧ガス保安法 ———— 1423
(8) フロン回収破壊法 ———— 1442
(9) 補助電気ヒーターの取り付けに関する基準 ———— 1447
（1）SI単位換算表
●仕事・エネルギー・熱量

<table>
<thead>
<tr>
<th></th>
<th>J</th>
<th>kW・h</th>
<th>kgf・m</th>
<th>kcal</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>2.7778 × 10^7</td>
<td>1.01972 × 10^1</td>
<td>2.38889 × 10^4</td>
<td></td>
</tr>
<tr>
<td>3.600 × 10^6</td>
<td>1</td>
<td>3.67098 × 10^6</td>
<td>8.6000 × 10^2</td>
<td></td>
</tr>
<tr>
<td>9.80665</td>
<td>2.72407 × 10^6</td>
<td>1</td>
<td>2.34270 × 10^3</td>
<td></td>
</tr>
<tr>
<td>4.18605 × 10^3</td>
<td>1.16279 × 10^3</td>
<td>4.26858 × 10^2</td>
<td>1</td>
<td></td>
</tr>
</tbody>
</table>

●圧力

<table>
<thead>
<tr>
<th></th>
<th>Pa</th>
<th>kPa</th>
<th>MPa</th>
<th>kgf・cm²</th>
<th>mmH₂O</th>
<th>mmHg又はTorr</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
<td>1 × 10^3</td>
<td>1 × 10^6</td>
<td>1.01972 × 10^5</td>
<td>1.01972 × 10^1</td>
<td>7.50062 × 10^3</td>
</tr>
<tr>
<td>1 × 10^3</td>
<td>1</td>
<td>1 × 10^3</td>
<td>1.01972 × 10^2</td>
<td>1.01972 × 10^2</td>
<td>7.50062</td>
<td></td>
</tr>
<tr>
<td>1 × 10^6</td>
<td>1 × 10^3</td>
<td>1</td>
<td>1.01972 × 10</td>
<td>1.01972 × 10^5</td>
<td>7.50062 × 10^3</td>
<td></td>
</tr>
<tr>
<td>9.80665 × 10^4</td>
<td>9.80665 × 10</td>
<td>9.80665 × 10^2</td>
<td>1</td>
<td>1 × 10^4</td>
<td>7.35559 × 10^2</td>
<td></td>
</tr>
<tr>
<td>9.80665</td>
<td>9.80665 × 10^3</td>
<td>9.80665 × 10^6</td>
<td>1 × 10^4</td>
<td>1</td>
<td>7.35559 × 10^2</td>
<td></td>
</tr>
<tr>
<td>1.33322 × 10^2</td>
<td>1.33322 × 10^1</td>
<td>1.33322 × 10^4</td>
<td>1.35951 × 10^3</td>
<td>1.35951 × 10</td>
<td>1</td>
<td></td>
</tr>
</tbody>
</table>

（2）主要な従来単位とSI単位との比較表

<table>
<thead>
<tr>
<th>項目</th>
<th>基本量</th>
<th>SI単位</th>
<th>使用できない単位</th>
<th>換算</th>
</tr>
</thead>
<tbody>
<tr>
<td>空間および時間</td>
<td>長さ (メートル)</td>
<td>m</td>
<td>µ, in, ft</td>
<td>1 in = 25.4mm, 1 ft = 304.8mm</td>
</tr>
<tr>
<td>空間および時間</td>
<td>体積 (リットル), m³</td>
<td>L, m³</td>
<td>cc, floz</td>
<td></td>
</tr>
<tr>
<td>空間および時間</td>
<td>時間 (秒)</td>
<td>S</td>
<td>sec</td>
<td></td>
</tr>
<tr>
<td>空間および時間</td>
<td>加速度 (m/s²)</td>
<td>G</td>
<td>G</td>
<td>1G = 9.80665m/s²</td>
</tr>
<tr>
<td>周期現象および関連現象</td>
<td>周波数 (ヘルツ)</td>
<td>Hz</td>
<td>c/s, c</td>
<td></td>
</tr>
<tr>
<td>周期現象および関連現象</td>
<td></td>
<td>c/s, c</td>
<td>1c/s = 1Hz</td>
<td></td>
</tr>
<tr>
<td>力学</td>
<td>質量 (キログラム)</td>
<td>kg</td>
<td>oz, lb, car, ct</td>
<td></td>
</tr>
<tr>
<td>力学</td>
<td>力 (ニュートン)</td>
<td>N</td>
<td>kgf</td>
<td></td>
</tr>
<tr>
<td>力学</td>
<td>压力 (パスカル)</td>
<td>Pa</td>
<td>kgf/cm², mAQ, mHg</td>
<td></td>
</tr>
<tr>
<td>力学</td>
<td>仕事 (ジュール)</td>
<td>J</td>
<td>kgf・m</td>
<td></td>
</tr>
<tr>
<td>力学</td>
<td>冷凍能力 (ワット)</td>
<td>W</td>
<td>kcal/h, BTU/h</td>
<td></td>
</tr>
<tr>
<td>熱学</td>
<td>温度 (摂氏度)</td>
<td>℃</td>
<td>F(華氏度)</td>
<td></td>
</tr>
<tr>
<td>熱学</td>
<td>熱 (ジュール)</td>
<td>J</td>
<td>cal</td>
<td></td>
</tr>
<tr>
<td>熱学</td>
<td>音圧レベル (dB)</td>
<td>dB</td>
<td>ホン</td>
<td>1 ホン = 1dB</td>
</tr>
<tr>
<td>熱学</td>
<td>成績係数 (COP)</td>
<td>COP</td>
<td>EER(kcal/hW)</td>
<td></td>
</tr>
</tbody>
</table>

(注記) 上表のSI単位表は、代表的な単位のみ記載しています。
(3) 空調システム計算の公式

1. 顕熱 (SH) の計算式
 \[Q = \frac{1.006 \times 1.204 \times Q \times \Delta t}{3600} \text{ [kW]} \]
 \[SH = \frac{1.006 \times Q \times \Delta t}{3000} \text{ [kW]} \]
 \[\Delta t = \frac{3000 \times SH}{1.006 \times Q} \text{ [℃]} \]

2. 潜熱 (LH) の計算式
 \[Q = \frac{2501 \times 1.204 \times Q \times \Delta x}{3600} \text{ [kW]} \]
 \[LH = \frac{1.006 \times Q \times \Delta x}{3000} \text{ [kW]} \]
 \[\Delta x = \frac{0.836 \times Q \times \Delta x}{2501} \]

3. 全熱 (TC) を求める計算式
 \[TC = \frac{1.204 \times Q \times \Delta h}{3600} \text{ [kW]} \]
 \[\Delta h = \frac{3000 \times Q}{Q \times \Delta h} \text{ [kJ/kg]} \]

4. 送風量 (Q) の計算式
 \[Q = \frac{3600 \times SH}{1.006 \times 1.204 \times \Delta t} \text{ [m³/h]} \]
 \[W_{D,S} = 1.204 \times Q \times \Delta x \text{ [kg/h]} \]

5. 蒸気量 (W_D), 加湿量 (W_S)
 \[W_{D,S} = 1.204 \times Q \times \Delta x \text{ [kg/h]} \]

6. 加湿器 (スプレー) の負荷 (L_s)
 \[W_s = \frac{2257 \times W_S}{3600} \text{ [kW]} \]

7. 混合空気の乾球温度
 \[T_s = \frac{Q_1 \times t_1 + Q_2 \times t_2}{Q_2} \text{ [℃]} \]
 \[(Q_1 \times t_1 + Q_2 \times t_2) = (Q_3 \times t_3) \]
 \[(RA \times t_1) + (OA \times t_2) = (MA \times t_3) \]

8. 水の混合温度
 \[W_1 + W_2 = W_3 \]
 \[t_3 = \frac{(t_1 \times W_1 + t_2 \times W_2)}{W_3} \text{ [℃]} \]
 \[(W_1 \times t_1 + W_2 \times t_2) = (W_3 \times t_3) \]

9. (熱量: Φ = (熱量: C) × (質量: m) × (温度差: Δt))
 \[Φ = c \times m \times (t_2 - t_1) \text{ [kJ]} \]

10. 冷房の能力 (W_f)
 \[W_f = \frac{3600 \times R}{4.186 \times 1.0 \times Δt \times 60} \text{ [L/min]} \]

(注) 負荷計算書で熱量単位が [W] のときは
 \[1 \text{W} = 0.33 \text{kJ} \]

関連資料
東芝キヤリア空調システムズ
店舗・オフィス／ビル用空調システム
関連資料／法規編

冷暖房の能力や負荷

1. 乾燥空気の比熱 [kJ/kg·℃]
2. 準常空気の密度 [kg/m³]
3. 空調システムの計算 [kW]
4. 水の状態 [kW]
5. 冷房の能力 [kW]
6. 冷房の荷負 [kW]
7. 混合空気の乾球温度 [℃]
8. 混合空気の温度差 [℃]
9. 混合空気の温度差 [℃]
10. 冷房の能力 [kW]
関連資料

(4) 空気線図
(5) 冷媒の飽和温度と飽和圧力表

<table>
<thead>
<tr>
<th>温度 (°C)</th>
<th>R22</th>
<th>R134a</th>
<th>R407C</th>
<th>R410A</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>飽和圧力 (MPa)</td>
<td>飽和圧力 (MPa)</td>
<td>飽和圧力 (MPa)</td>
<td>飽和圧力 (MPa)</td>
</tr>
<tr>
<td>-30</td>
<td>0.0625</td>
<td>-0.0165</td>
<td>0.0881</td>
<td>0.0379</td>
</tr>
<tr>
<td>-28</td>
<td>0.0768</td>
<td>-0.0081</td>
<td>0.1045</td>
<td>0.0510</td>
</tr>
<tr>
<td>-26</td>
<td>0.0821</td>
<td>0.0037</td>
<td>0.1220</td>
<td>0.0651</td>
</tr>
<tr>
<td>-24</td>
<td>0.1083</td>
<td>0.0105</td>
<td>0.1405</td>
<td>0.0802</td>
</tr>
<tr>
<td>-22</td>
<td>0.1256</td>
<td>0.0208</td>
<td>0.1603</td>
<td>0.0963</td>
</tr>
<tr>
<td>-20</td>
<td>0.1439</td>
<td>0.0319</td>
<td>0.1813</td>
<td>0.1135</td>
</tr>
<tr>
<td>-18</td>
<td>0.1634</td>
<td>0.0438</td>
<td>0.2035</td>
<td>0.1319</td>
</tr>
<tr>
<td>-16</td>
<td>0.1840</td>
<td>0.0564</td>
<td>0.2271</td>
<td>0.1515</td>
</tr>
<tr>
<td>-14</td>
<td>0.2059</td>
<td>0.0700</td>
<td>0.2520</td>
<td>0.1724</td>
</tr>
<tr>
<td>-12</td>
<td>0.2290</td>
<td>0.0844</td>
<td>0.2784</td>
<td>0.1946</td>
</tr>
<tr>
<td>-10</td>
<td>0.2534</td>
<td>0.0998</td>
<td>0.3063</td>
<td>0.2182</td>
</tr>
<tr>
<td>-8</td>
<td>0.2791</td>
<td>0.1161</td>
<td>0.357</td>
<td>0.2431</td>
</tr>
<tr>
<td>-6</td>
<td>0.3063</td>
<td>0.1335</td>
<td>0.3667</td>
<td>0.2696</td>
</tr>
<tr>
<td>-4</td>
<td>0.3349</td>
<td>0.1519</td>
<td>0.3993</td>
<td>0.2977</td>
</tr>
<tr>
<td>-2</td>
<td>0.3650</td>
<td>0.1714</td>
<td>0.4337</td>
<td>0.3273</td>
</tr>
<tr>
<td>0</td>
<td>0.3966</td>
<td>0.1920</td>
<td>0.4698</td>
<td>0.3586</td>
</tr>
<tr>
<td>2</td>
<td>0.4298</td>
<td>0.2138</td>
<td>0.5077</td>
<td>0.3916</td>
</tr>
<tr>
<td>4</td>
<td>0.4647</td>
<td>0.2369</td>
<td>0.5475</td>
<td>0.4265</td>
</tr>
<tr>
<td>6</td>
<td>0.5012</td>
<td>0.2612</td>
<td>0.5892</td>
<td>0.4632</td>
</tr>
<tr>
<td>8</td>
<td>0.5395</td>
<td>0.2868</td>
<td>0.6329</td>
<td>0.5018</td>
</tr>
<tr>
<td>10</td>
<td>0.5796</td>
<td>0.3138</td>
<td>0.6787</td>
<td>0.5424</td>
</tr>
<tr>
<td>12</td>
<td>0.6216</td>
<td>0.3422</td>
<td>0.7266</td>
<td>0.5851</td>
</tr>
<tr>
<td>14</td>
<td>0.6654</td>
<td>0.3721</td>
<td>0.7766</td>
<td>0.6299</td>
</tr>
<tr>
<td>16</td>
<td>0.7112</td>
<td>0.4035</td>
<td>0.8289</td>
<td>0.6770</td>
</tr>
<tr>
<td>18</td>
<td>0.7590</td>
<td>0.4364</td>
<td>0.8835</td>
<td>0.7263</td>
</tr>
<tr>
<td>20</td>
<td>0.8089</td>
<td>0.4709</td>
<td>0.9407</td>
<td>0.7779</td>
</tr>
<tr>
<td>22</td>
<td>0.8609</td>
<td>0.5071</td>
<td>1.000</td>
<td>0.8320</td>
</tr>
<tr>
<td>24</td>
<td>0.9150</td>
<td>0.5449</td>
<td>1.062</td>
<td>0.8886</td>
</tr>
<tr>
<td>26</td>
<td>0.9714</td>
<td>0.5846</td>
<td>1.126</td>
<td>0.9477</td>
</tr>
<tr>
<td>28</td>
<td>1.0301</td>
<td>0.6260</td>
<td>1.193</td>
<td>1.010</td>
</tr>
<tr>
<td>30</td>
<td>1.0911</td>
<td>0.6693</td>
<td>1.263</td>
<td>1.075</td>
</tr>
<tr>
<td>32</td>
<td>1.1544</td>
<td>0.7145</td>
<td>1.335</td>
<td>1.142</td>
</tr>
<tr>
<td>34</td>
<td>1.2203</td>
<td>0.7616</td>
<td>1.411</td>
<td>1.212</td>
</tr>
<tr>
<td>36</td>
<td>1.2886</td>
<td>0.8108</td>
<td>1.489</td>
<td>1.286</td>
</tr>
<tr>
<td>38</td>
<td>1.3596</td>
<td>0.8621</td>
<td>1.570</td>
<td>1.362</td>
</tr>
<tr>
<td>40</td>
<td>1.4331</td>
<td>0.9155</td>
<td>1.654</td>
<td>1.442</td>
</tr>
<tr>
<td>42</td>
<td>1.5093</td>
<td>0.9710</td>
<td>1.741</td>
<td>1.525</td>
</tr>
<tr>
<td>44</td>
<td>1.5883</td>
<td>1.0299</td>
<td>1.831</td>
<td>1.611</td>
</tr>
<tr>
<td>46</td>
<td>1.6702</td>
<td>1.0900</td>
<td>1.924</td>
<td>1.701</td>
</tr>
<tr>
<td>48</td>
<td>1.7549</td>
<td>1.1515</td>
<td>2.021</td>
<td>1.794</td>
</tr>
<tr>
<td>50</td>
<td>1.8425</td>
<td>1.2164</td>
<td>2.121</td>
<td>1.891</td>
</tr>
<tr>
<td>52</td>
<td>1.9332</td>
<td>1.2838</td>
<td>2.224</td>
<td>1.992</td>
</tr>
<tr>
<td>54</td>
<td>2.0269</td>
<td>1.3538</td>
<td>2.331</td>
<td>2.096</td>
</tr>
<tr>
<td>56</td>
<td>2.1238</td>
<td>1.4265</td>
<td>2.441</td>
<td>2.205</td>
</tr>
<tr>
<td>58</td>
<td>2.2240</td>
<td>1.5018</td>
<td>2.555</td>
<td>2.318</td>
</tr>
<tr>
<td>60</td>
<td>2.3275</td>
<td>1.5799</td>
<td>2.672</td>
<td>2.435</td>
</tr>
</tbody>
</table>

(REFPROP Ver5.10)
（6）新冷媒機種施工時の注意事項

① 新冷媒について
現在多く使用されているR22はHCFC系冷媒であり、オゾン層破壊物質のため、2020年には全廃の予定です。その代替冷媒としてHFC系新冷媒（R407C、R410A）を採用することとしました。新冷媒機種の冷媒管配工手順は、基本的にはR22と同様ですが、冷媒と冷凍機油が異なるため、他の冷媒や冷凍機油と混合させないように、専用の工具等が必要となります。
R407Cの圧力はR22Cに比べ若干高くなります。また、R407Cは非共沸混合冷媒のため、必ずボンベ液相側から充填を行ってください。気相で充填すると組成が大きく変化します。一方、R410Aの圧力は、約1.6倍と高くなりますが、擬似共沸ですので組成が変わりにくい、安定した冷媒です。

新冷媒の組成冷媒と沸点

<table>
<thead>
<tr>
<th>新冷媒</th>
<th>組成</th>
<th>沸点</th>
</tr>
</thead>
<tbody>
<tr>
<td>R410A</td>
<td>R32</td>
<td>-51.8℃</td>
</tr>
<tr>
<td></td>
<td>R125</td>
<td>-48.6℃</td>
</tr>
</tbody>
</table>

新冷媒 | 組成 | 沸点 |
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>R407C</td>
<td>R32</td>
<td>-51.8℃</td>
</tr>
<tr>
<td></td>
<td>R125</td>
<td>-48.5℃</td>
</tr>
<tr>
<td></td>
<td>R134a</td>
<td>-26.2℃</td>
</tr>
</tbody>
</table>

② 必要器材について
据え付け工事を行うために、下表に示す工具・器材を準備する必要があります。これらの中で新規に準備する工具・器材は必ず専用品としてください。R410A機種は、他の冷媒の誤装入防止のため、サービスポート径を変更しています。
また、耐圧強度を上げるために、冷媒配管のフレア加工寸法、フレアアダプターの二面幅寸法（φ12.7、φ15.9鋼管用）を変更しています。冷凍機油の混入に十分な注意が重要です。

フレアツール
使用する冷媒にフレア加工します。R22用でも出し入れを調整すれば使用できます。

フレアツール

<table>
<thead>
<tr>
<th>膨張外径（mm）</th>
<th>φ12.7</th>
<th>φ15.9</th>
</tr>
</thead>
<tbody>
<tr>
<td>R410A</td>
<td>4.4</td>
<td>5.5</td>
</tr>
<tr>
<td>R407C（R22C）</td>
<td>6.4</td>
<td>8.5</td>
</tr>
<tr>
<td>R127</td>
<td>12.7</td>
<td>15.9</td>
</tr>
<tr>
<td>R181</td>
<td>16.6</td>
<td>19.7</td>
</tr>
</tbody>
</table>

フレア加工寸法

ゲージマニホールド
R410Aは圧力が高いため、耐圧を上げています。また他冷媒の誤装入防止のために各ポートサイズはR407C用よりも大きくしてあります。

ゲージマニホールド

R410A用はゲージマニホールドと同様に、耐圧を上げてあります。また口金サイズもポート合わせサイズを変更しております。

チャージホース
R410A用は耐圧強度を上げるために、φ12.7及びφ159用の二面幅寸法をR407C（R22）に大きくしてますので、対処の際の広いトルクレンチが必要です。

トルクレンチ

R410A用の冷媒電子は1本、作業時の耐衝撃性をアップしております。

冷媒ポンプ
R410A用のチャージホースは достижениも必要になります。液充填のため、サイオン管式を使用ください。
③配管材料について

配管キットを使用する際は、冷媒種によりフレア加工やフレアナット等が異なりますので、冷媒種2種のものを必ずご使用ください。配管キット以外の場合は、JIS H 3300「鋼管および鋼合金管目無管」のC1220タイプの鋼管を使用します。
（配管径φ19.0以上：C1220T-0（肉厚は下表参照）、配管径φ25.4：C1220T-1/2H）

<table>
<thead>
<tr>
<th>鋼管の直径（mm）</th>
<th>6.4</th>
<th>9.5</th>
<th>12.7</th>
<th>15.9</th>
<th>19.1</th>
<th>25.4</th>
</tr>
</thead>
<tbody>
<tr>
<td>鋼管の内径（mm）</td>
<td>0.8</td>
<td>0.8</td>
<td>0.8</td>
<td>1.0</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>1/2HまたはH材</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>1.0</td>
</tr>
<tr>
<td>1/2HまたはH材</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>1.0</td>
</tr>
</tbody>
</table>

既設配管を使用する際は、まず十分な冷房運転をしてから冷媒回収をします。回収後、配管内をブローし、異物や汚れた油が出なければ、配管を洗浄しなくても使用できます。フレアナットについては、本体取付のナットを使用し、R410A用フレア寸法で加工してください。P112形～P160形でφ19.1の既設配管を使用する場合は、室外機内の既設配管対応ナットを設定してください。（既設配管についての詳細、及びP224形～P280形の既設配管対応については据付説明書を参照願うか、弊社営業担当にお問い合わせください。）

④施工に注意

●使用冷媒の確認

工事前には使用冷媒の確認をし、冷媒に合った配管・器材を用意します。

●冷媒配管工事について

3原則（ドライ・クリーン・タイト）が基本となります。
3原則に従えると、冷凍サイクルの玷まり・ガス欠・冷凍機油の劣化が防げ、冷えない、歴まらない等の性能不備、強いては機器故障の原因になります。配管の内部に水分・ゴミが残らないよう管理し、ブラッシング等により異物を排除します。ローつけ作業時には窒素ガスを流しながら施工し、内部に酸化皮膜が発生しないようにします。

●気密試験について

気密試験により冷媒漏れを防止します。R22用のリーケテスタでは検知できませんので、HFC冷媒用を使用します。

●真空乾燥について

真空引きは、真空到達度5Torrで、排気量の大きい真空ポンプを使用します。また、逆流防止機構のないものは逆流防止アクタを併用します。

●冷媒追加充填について

冷媒種と適正冷媒量を確認し、液状で充填します。必ず使用する新冷媒専用のメジャーマニュアルド、チャージハースを使用します。

●ガスリーク時の追加補充について

ガスリーク時には、（充填時増量×10%）gを上限とした追加補充が可能です。

⑤施工の流れ（新冷媒R410A）
(7) 冷媒漏洩に対する注意事項

弊社エアコンは、冷媒として R407C、R410A を使用しています。この冷媒 R407C、R410A はそれ自体は無害、不燃性の安全な冷媒ですが、エアコンを施設する部屋は、万一その室内に冷媒ガスが漏洩しても、冷媒ガスの濃度が限界濃度を超えない部屋の大きさ或いは処置が必要です。

【※限界濃度〜人体に支障なく緊急処置が行えるフロンガス濃度
R407C, R410A の限界濃度: 0.30kg/m^3（社団法人 日本冷凍空調工業会）】

① 冷媒濃度確認手順

下記の手順で冷媒濃度を算出してください。

1. 各冷媒系統毎に全冷媒充填量 (kg) を算出
 - 室外機 1 系統の冷媒充填量 + 追加冷媒充填量 = 冷媒設備の全冷媒充填量 (kg)
 - 室外機 1 系統の冷媒充填量：工場出荷時の冷媒充填量
 - 追加冷媒充填量：現地での配管長さや配管径に応じて追加する冷媒量
2. 室内ユニットを設置した最小の室内容積 (m^3) を算出→注 1 による
3. 冷媒濃度を算出
 - 冷媒設備の全冷媒充填量 (kg) で除する
 - 室内ユニットを設置した最小の室内容積 (m^3)

② 冷媒濃度が限界濃度を超える場合は、2 番目、3 番目と順に室内容積の大きいものに移行しながら同様の計算を実施し、限界濃度を超えるすべての対象を明らかにしてください。→(2) 限界濃度を超えた場合の対応を参照ください。
注1. 最小室内容積の基準は下表による。

（1）間仕切りがない場合（斜線部に示す部分が対象となる。）

<table>
<thead>
<tr>
<th>間仕切りがない場合の開口部基準</th>
</tr>
</thead>
<tbody>
<tr>
<td>（1）間仕切りがない場合（斜線部に示す部分が対象となる。）</td>
</tr>
<tr>
<td>（2）隣接した室との間仕切りに漏洩した冷媒ガスの換気に有効な開口部がある場合（ドアのない開口部があるか、またはドアの上部および下部にそれぞれ床面積の0.15％以上の開口部を持つもの。）</td>
</tr>
<tr>
<td>（3）間仕切りした各部屋に冷媒設備（室内機）を設け、冷媒配管で連結した場合、当然最も小さい室が対象であるが、限界濃度を超える最も小さい室にガス漏洩警報設備とこれに連動する機械換気装置を設ける場合、その次に小さい室の室内容積が対象となる。</td>
</tr>
</tbody>
</table>

関連資料・法規編
② 限界濃度を超えた場合の対応（JRA-GL13-1998）
室内容積に対して冷媒濃度が限界濃度を超えた場合は、以下の要領によって適切な対応を行ってください。

対応１：換気のための有効な開口部を設ける。
● 部屋の外部とつながるドアの上下部にそれぞれ床面積の0.15％以上の開口部を設けるか、ドアのない開口部を設けてください。

対応２：冷媒設備の全冷媒充填量を減らす。
● 冷媒配管長を短くする。
 室外ユニットの置き場所を室内ユニットの近くに変更して、冷媒配管長を短くする事で全冷媒充填量を低減します。
● 室外ユニットの容積を小さくする。
 室外ユニットを複数台に分散する事で一冷媒系統当りの室外ユニット容量を小さくし冷媒充填量を低減します。

例えば、20HP × 1台のシステムは10HP × 2台のシステムにする事で、一冷媒系統当りの冷媒量を約40％にする事ができます。

対応３：換気システムの設置
換気システムを設置する事により、万一冷媒が漏洩した場合の冷媒濃度の過昇を防ぎます。
換気システムは、外気導入方式と排気方式がありますが、冷媒の性質等から外気導入方式を推奨します。
● 換気量
 換気量は、対象冷媒設備の全冷媒充填量と部屋容積によって下図に示す量以上としてください。
● センサとの連動
 換気システムは、原則として空調機の使用／不使用、室内への在／不在に関わらず常に作動させてください。
それが不可能な場合は、センサシステムによって冷媒漏洩時に換気システムを自動的に作動させて下さい。

換気量によるシステムの選定

![換気量によるシステムの選定](image-url)
(8) 室外機 JRA 耐塩害仕様、耐重塩害仕様

●スーパーパワーエコ R (SPE P40 〜 P160 形)、スマートエコ R (SME P40 〜 P280 形)

<table>
<thead>
<tr>
<th>部品名</th>
<th>標準仕様</th>
<th>JRA耐塩害仕様</th>
<th>JRA耐重塩害仕様</th>
</tr>
</thead>
<tbody>
<tr>
<td>外装関係</td>
<td>塗装鋼板</td>
<td>塗装鋼板</td>
<td>塗装鋼板</td>
</tr>
<tr>
<td>底板</td>
<td>(SPE)P40〜P50</td>
<td>アルミニウムマグネシウム重金合メキシ鋼板</td>
<td>アルミニウムマグネシウム重金合メキシ鋼板</td>
</tr>
<tr>
<td></td>
<td>(SME)P40〜P80</td>
<td>高耐候アクリル樹脂塗装（内外面）3回塗り</td>
<td>高耐候アクリル樹脂塗装（内外面）3回塗り</td>
</tr>
<tr>
<td></td>
<td>(SPE)P56〜P160</td>
<td>アルミニウムマグネシウム重金合メキシ鋼板</td>
<td>アルミニウムマグネシウム重金合メキシ鋼板</td>
</tr>
<tr>
<td></td>
<td>(SME)P112〜P280</td>
<td>高耐候アクリル樹脂塗装（内外面）2回塗り</td>
<td>高耐候アクリル樹脂塗装（内外面）2回塗り</td>
</tr>
<tr>
<td>フィンガード</td>
<td>(SPE)P40〜P50</td>
<td>PP樹脂</td>
<td>PP樹脂</td>
</tr>
<tr>
<td></td>
<td>(SME)P40〜P80</td>
<td>PP樹脂</td>
<td>PP樹脂</td>
</tr>
<tr>
<td></td>
<td>(SPE)P56〜P160</td>
<td>PP樹脂</td>
<td>PP樹脂</td>
</tr>
<tr>
<td></td>
<td>(SME)P112〜P280</td>
<td>PP樹脂</td>
<td>PP樹脂</td>
</tr>
<tr>
<td>装飾熱交換器</td>
<td>フィン (SPE)</td>
<td>観水処理（アルミ）</td>
<td>観水処理（アルミ）</td>
</tr>
<tr>
<td></td>
<td>(SME)</td>
<td>観水処理（アルミ）</td>
<td>観水処理（アルミ）</td>
</tr>
<tr>
<td>鋼パイプ</td>
<td>鉄制</td>
<td>なし処理（鋼）</td>
<td>なし処理（鋼）</td>
</tr>
<tr>
<td></td>
<td></td>
<td>なし処理（鋼）</td>
<td>なし処理（鋼）</td>
</tr>
<tr>
<td>塩化鋼板</td>
<td>なし処理（貴重メキシ鋼板）</td>
<td>エポキシ樹脂クリア塗装</td>
<td>エポキシ樹脂クリア塗装</td>
</tr>
<tr>
<td></td>
<td></td>
<td>鋼製樹脂クリア塗装</td>
<td>鋼製樹脂クリア塗装</td>
</tr>
<tr>
<td>ボルト</td>
<td>フィン (SPE)</td>
<td>AS-G樹脂</td>
<td>AS-G樹脂</td>
</tr>
<tr>
<td></td>
<td>(SME)</td>
<td>AS-G樹脂</td>
<td>AS-G樹脂</td>
</tr>
<tr>
<td></td>
<td>ファンモータ</td>
<td>ポリエステル樹脂</td>
<td>ポリエステル樹脂</td>
</tr>
<tr>
<td></td>
<td></td>
<td>ポリエステル樹脂</td>
<td>ポリエステル樹脂</td>
</tr>
<tr>
<td>電装品箱</td>
<td>外板</td>
<td>溶融亜鉛メキシ鋼板</td>
<td>溶融亜鉛メキシ鋼板</td>
</tr>
<tr>
<td></td>
<td></td>
<td>アクリル樹脂塗装</td>
<td>アクリル樹脂塗装</td>
</tr>
<tr>
<td></td>
<td>P C板</td>
<td>無処理</td>
<td>無処理</td>
</tr>
<tr>
<td></td>
<td></td>
<td>なし処理（貴重メキシ鋼板）</td>
<td>なし処理（貴重メキシ鋼板）</td>
</tr>
<tr>
<td></td>
<td></td>
<td>エポキシ樹脂塗装</td>
<td>エポキシ樹脂塗装</td>
</tr>
<tr>
<td>ウェジス</td>
<td>部品</td>
<td>無処理</td>
<td>無処理</td>
</tr>
<tr>
<td></td>
<td>内部</td>
<td>溶鉄鋼線ジオメット処理</td>
<td>SUS410ジオメット処理</td>
</tr>
<tr>
<td></td>
<td></td>
<td>SUS410ジオメット処理（ナイロンワッシャ付）</td>
<td>SUS410ジオメット処理（ナイロンワッシャ付）</td>
</tr>
</tbody>
</table>

●スーパーパワーエコ R P224・P280 形、スーパーモジュールマルチ

<table>
<thead>
<tr>
<th>部品名</th>
<th>標準仕様</th>
<th>JRA耐塩害仕様</th>
<th>JRA耐重塩害仕様</th>
</tr>
</thead>
<tbody>
<tr>
<td>外装関係</td>
<td>塗装鋼板</td>
<td>塗装鋼板</td>
<td>塗装鋼板</td>
</tr>
<tr>
<td>底板</td>
<td>ポリプレス</td>
<td>塗装鋼板</td>
<td>塗装鋼板</td>
</tr>
<tr>
<td></td>
<td>塗装鋼板</td>
<td>高耐候アクリル樹脂塗装（内外面）2回塗り</td>
<td>高耐候アクリル樹脂塗装（内外面）2回塗り</td>
</tr>
<tr>
<td>ファンガード</td>
<td>PEコーティング（紫外線吸収剤入）</td>
<td>PEコーティング（紫外線吸収剤入）</td>
<td>PEコーティング（紫外線吸収剤入）</td>
</tr>
<tr>
<td>熱交換器</td>
<td>フィン</td>
<td>樹脂コークフィン</td>
<td>樹脂コークフィン</td>
</tr>
<tr>
<td></td>
<td>鋼パイプ</td>
<td>無処理（鋼）</td>
<td>無処理（鋼）</td>
</tr>
<tr>
<td>塩化鋼板</td>
<td>無処理（貴重メキシ鋼板）</td>
<td>エポキシ樹脂塗装</td>
<td>エポキシ樹脂塗装</td>
</tr>
<tr>
<td></td>
<td></td>
<td>アクリル樹脂塗装</td>
<td>アクリル樹脂塗装</td>
</tr>
<tr>
<td>ボルト</td>
<td>フィン (SPE)</td>
<td>AS-G樹脂</td>
<td>AS-G樹脂</td>
</tr>
<tr>
<td></td>
<td>(SME)</td>
<td>AS-G樹脂</td>
<td>AS-G樹脂</td>
</tr>
<tr>
<td></td>
<td>ファンモータ</td>
<td>アルミダイカスト</td>
<td>アルミダイカスト</td>
</tr>
<tr>
<td></td>
<td></td>
<td>アルミダイカスト</td>
<td>アルミダイカスト</td>
</tr>
<tr>
<td>電気部品箱</td>
<td>外板</td>
<td>溶融亜鉛メキシ鋼板</td>
<td>溶融亜鉛メキシ鋼板</td>
</tr>
<tr>
<td></td>
<td></td>
<td>アクリル樹脂塗装</td>
<td>アクリル樹脂塗装</td>
</tr>
<tr>
<td></td>
<td>P C板</td>
<td>無処理</td>
<td>無処理</td>
</tr>
<tr>
<td></td>
<td></td>
<td>なし処理（貴重メキシ鋼板）</td>
<td>なし処理（貴重メキシ鋼板）</td>
</tr>
<tr>
<td></td>
<td></td>
<td>エポキシ樹脂塗装</td>
<td>エポキシ樹脂塗装</td>
</tr>
<tr>
<td>ウェジス</td>
<td>内部</td>
<td>無処理</td>
<td>無処理</td>
</tr>
<tr>
<td></td>
<td></td>
<td>溶鉄鋼線ジオメット処理</td>
<td>SUS410ジオメット処理</td>
</tr>
<tr>
<td></td>
<td></td>
<td>SUS410ジオメット処理</td>
<td>SUS410ジオメット処理</td>
</tr>
<tr>
<td></td>
<td></td>
<td>溶鉄鋼線クロメット処理</td>
<td>SUS410ジオメット処理</td>
</tr>
<tr>
<td></td>
<td></td>
<td>SUS410ジオメット処理</td>
<td>SUS410ジオメット処理</td>
</tr>
</tbody>
</table>
中温用

<table>
<thead>
<tr>
<th>部品名</th>
<th>标准仕様</th>
<th>JRA耐塩害仕様</th>
<th>JRA耐重塩害仕様</th>
</tr>
</thead>
<tbody>
<tr>
<td>外装関係</td>
<td>塗装鋼板</td>
<td>塗装鋼板</td>
<td>塗装鋼板</td>
</tr>
<tr>
<td>薄板</td>
<td>ROP-CAP21HD</td>
<td>塗装鋼板</td>
<td>塗装鋼板</td>
</tr>
<tr>
<td></td>
<td>ROP-CAP31HD</td>
<td>高耐候性クリアクレス塗装板(内外面)</td>
<td>高耐候性クリアクレス塗装板(内外面)</td>
</tr>
<tr>
<td></td>
<td>ROP-CAP41HD</td>
<td>塗装鋼板</td>
<td>塗装鋼板</td>
</tr>
<tr>
<td></td>
<td>ROP-CAP51HD</td>
<td>高耐候性クリアクレス塗装板(内外面)</td>
<td>高耐候性クリアクレス塗装板(内外面)</td>
</tr>
<tr>
<td>フィンガード</td>
<td>ROP-CAP21HD</td>
<td>軟鋼板</td>
<td>軟鋼板</td>
</tr>
<tr>
<td></td>
<td>ROP-CAP31HD</td>
<td>PEコーティング(紫外線吸収剤)</td>
<td>PEコーティング(紫外線吸収剤)</td>
</tr>
<tr>
<td></td>
<td>ROP-CAP41HD</td>
<td>軟鋼板</td>
<td>軟鋼板</td>
</tr>
<tr>
<td></td>
<td>ROP-CAP51HD</td>
<td>PEコーティング(紫外線吸収剤)</td>
<td>PEコーティング(紫外線吸収剤)</td>
</tr>
<tr>
<td>ファンガード</td>
<td>PP樹脂</td>
<td>PP樹脂</td>
<td>PP樹脂</td>
</tr>
<tr>
<td>熱交換器</td>
<td>樹脂コートフィン</td>
<td>樹脂コートフィン</td>
<td>樹脂コートフィン</td>
</tr>
<tr>
<td>銅パイプ</td>
<td>無処理(銅)</td>
<td>無処理(銅)</td>
<td>アクリル樹脂塗装</td>
</tr>
<tr>
<td>端板</td>
<td>無処理(塗装鋼板)</td>
<td>エポキシ樹脂塗装</td>
<td>エポキシ樹脂塗装</td>
</tr>
<tr>
<td>プロペラファン</td>
<td>AS-G樹脂</td>
<td>AS-G樹脂</td>
<td>AS-G樹脂</td>
</tr>
<tr>
<td>ファンモータ</td>
<td>ポリエステル樹脂</td>
<td>ポリエステル樹脂</td>
<td>ポリエステル樹脂</td>
</tr>
<tr>
<td>電装品箱</td>
<td>混合鋼板</td>
<td>混合鋼板(塗装鋼板)</td>
<td>混合鋼板(塗装鋼板)</td>
</tr>
<tr>
<td>PCC板</td>
<td>無処理</td>
<td>裏面絶縁コーティング処理</td>
<td>裏面絶縁コーティング処理</td>
</tr>
<tr>
<td>ポルト</td>
<td>SUS410ダクロ処理</td>
<td>SUS410ダクロ処理</td>
<td>SUS410ダクロ処理</td>
</tr>
<tr>
<td>キャップ</td>
<td>SUS410ダクロ処理</td>
<td>SUS410ダクロ処理</td>
<td>SUS410ダクロ処理</td>
</tr>
<tr>
<td>内部</td>
<td>炭素鋼板ステンレス</td>
<td>SUS410ダクロ処理</td>
<td>SUS410ダクロ処理</td>
</tr>
<tr>
<td>外部</td>
<td>SUS410ダクロ処理(ナイロンワッシャ付)</td>
<td>SUS410ダクロ処理(ナイロンワッシャ付)</td>
<td></td>
</tr>
<tr>
<td>関連資料</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>---</td>
<td>---</td>
<td>---</td>
<td></td>
</tr>
<tr>
<td>●蓄熱ユニット RBM－CT250Tシリーズ</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>標準仕様</td>
<td>JRA耐塩害仕様</td>
<td>JRA耐重塩害仕様</td>
</tr>
<tr>
<td>外装関係</td>
<td>・塗装銅板</td>
<td>・塗装銅板</td>
<td>・塗装銅板</td>
</tr>
<tr>
<td>天板、底板</td>
<td>・溶融亜鉛メッキ鋼板</td>
<td>・溶融亜鉛メッキ鋼板</td>
<td>・溶融亜鉛メッキ鋼板</td>
</tr>
<tr>
<td></td>
<td>・高耐候アクリル樹脂塗装 (内外面) 1回塗り</td>
<td>・高耐候アクリル樹脂塗装 (内外面) 2回塗り</td>
<td>・高耐候アクリル樹脂塗装 (内外面) 3回塗り</td>
</tr>
<tr>
<td>タンク</td>
<td>・SUS 444</td>
<td>・SUS 444</td>
<td>・SUS 444</td>
</tr>
<tr>
<td>熱交換器</td>
<td>銅パイプ</td>
<td>・無処理(銅)</td>
<td>・無処理(銅)</td>
</tr>
<tr>
<td></td>
<td>端板</td>
<td>・SUS 304</td>
<td>・SUS 304</td>
</tr>
<tr>
<td>配管</td>
<td>・無処理(銅)</td>
<td>・無処理(銅)</td>
<td>・無処理(銅)</td>
</tr>
<tr>
<td>電気部品箱</td>
<td>外板</td>
<td>・溶融亜鉛メッキ鋼板</td>
<td>・溶融亜鉛メッキ鋼板</td>
</tr>
<tr>
<td></td>
<td></td>
<td>・アクリル樹脂塗装 (内外面) 1回塗り</td>
<td>・アクリル樹脂塗装 (内外面) 1回塗り</td>
</tr>
<tr>
<td></td>
<td>P C板</td>
<td>・無処理</td>
<td>・裏表絶縁コーティング処理</td>
</tr>
<tr>
<td></td>
<td></td>
<td>・SUS 410+ダウ処理</td>
<td>・SUS 410+ダウ処理</td>
</tr>
<tr>
<td>ねじ</td>
<td>・炭素鋼線クロメート処理</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
1. 耐塩害仕様または耐重塩害仕様の選択は下表を目安にしてください。
Lは耐塩害仕様、Hは耐重塩害仕様を表します。
その地域の使用環境及び実績を把握し、耐塩害(L)、耐重塩害(H)の選択をしてください。

<table>
<thead>
<tr>
<th>使用環境</th>
<th>設置目安距離(m)</th>
</tr>
</thead>
<tbody>
<tr>
<td>直接潮風が当る地域</td>
<td>0 300 500 1000</td>
</tr>
<tr>
<td>内海に面する地域</td>
<td>H L L</td>
</tr>
<tr>
<td>外洋に面する地域</td>
<td>H L L</td>
</tr>
<tr>
<td>沖縄、離島</td>
<td>H</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>使用環境</th>
<th>設置目安距離(m)</th>
</tr>
</thead>
<tbody>
<tr>
<td>直接潮風が当らない地域</td>
<td>0 300 500 1000</td>
</tr>
<tr>
<td>内海に面する地域</td>
<td>L</td>
</tr>
<tr>
<td>外洋に面する地域</td>
<td>H L L</td>
</tr>
<tr>
<td>沖縄、離島</td>
<td>H</td>
</tr>
</tbody>
</table>

2. 耐塩害、耐重塩害仕様は海岸線の近傍に使用するものです。温泉地域・化学薬品を使用する場所などでは使用しないでください。

3. 熱交換器は塩害、耐塩害とも同じ仕様のものを使用します。耐塩害においては、使用環境によって寿命が短くなります。

4. 耐重塩害仕様を使用した場合でも、発績に対しては万全ではありません。機械の設置状況・使用環境により機械の寿命が全く異なる。以下の点に注意してください。

(1) 設計上の注意事項
- 機械は建物の風下に設置すること。(図1参照)
- どうしても海岸面に設置する場合は、潮風が直接当らないよう防風板等を設ける。(図2参照)
- 水はけの良い場所に設置すること。
- 雨の当る場所に設置すること。

(2) 据付上の注意事項
① 据付け時は機械に傷をつけないよう配慮し、ビニールシートなどで覆って据付け作業をしてください。万が一傷を付けたような場合は丁寧に補修してください。
② 基礎部分の排水を良くしてください。特に熱交換器の下部が基礎部分に付かないよう配慮してください。

(3) メンテナンスの実施 (機械の寿命を延ばすために必ず実施してください)
① シーズンオフなど長期間機械を停止する場合は、機械にカバーをかける等の処置をする。
② 水をはくワックスの塗布等、定期的に防錆処理を行なうこと。
③ 1月1回、室外ユニットを水で洗浄してください。場所・環境によっては年に1回、外観を塗装してください。
④ 電気部品は年1回定期的に目視にて確認し、問題があれば交換してください。
制御基板は耐塩害も、耐塩害用と同じ仕様のものを使用します。サービス部品も同じです。もし制御基板が度々故障するような場合は別途相談してください。
（1）建築基準法

◇目的

建築基準法は、建築物の敷地、構造、設備および用途に関する最低の基準を定めて、国民の生命、健康および財産の保護を図り、もって公共の福祉の増進に資することを目的としている。

◇換気設備の設置義務（建築法第28条、建築第20条の3）

<table>
<thead>
<tr>
<th>居室の種類</th>
<th>機械換気設備</th>
<th>中央管理方式の空気調和設備</th>
</tr>
</thead>
<tbody>
<tr>
<td>一般の居室</td>
<td>V = 20 (N - 20)</td>
<td>V = 20A</td>
</tr>
<tr>
<td>特殊建築物の居室</td>
<td>V = 20A</td>
<td></td>
</tr>
</tbody>
</table>

注）1. 居室とは建築基準法2条4号の定義では「居住、執務、作業、集会、娯楽、その他これに類する目的のために、継続的に使用する室」のことをいいます。
2. 換気に有効な面積とは、実際に開口で換気を行う面積をいいます。
3. 床面積の算定にあたっては、ふすま・障子等随時開放しうる建具で仕切られた1室とみなされます。
4. 高さ31mをこえるものは、2000m²をこえる地下街では中央管理室で制御監視が行えるものとします。

◇居室内に設ける機械換気設備の技術基準

1）所要換気量（建築令20条2・3）

V = 所要換気量（m³/h）
A = 居室の床面積（m²）
Aw = 換気に有効な開口面積（m²）
N = 実状に応じた1人あたりの占有面積（m²）

（一般の居室…10をこえるときは10）
（特殊建築物の居室…3をこえるときは3）

2）構造（建築令第129条の2の3）

第1種換気
（全ての住宅に
通じています）

第2種換気

第3種換気

3）1人当たりの占有面積

1人当たりの占有面積N値は建築物の実況に応じて算定するのが原則ですが、JIS A3302（建築物の用途別による尿汚処理対象人員算定表）に基づいて東京都が作成した一覧表が全国的にも使用されている。

●建築用途別の1人当たり占有面積表

東芝キヤリック空調システムズ 店舗・オフィス・ビル用空調システム 関連資料・法規編

1406
◇空気調和設備の技術基準

(1) 構造
換気上有効な給気機及び排気機、換気上有効な給気機及び排気口又は換気上有効な給気口及び排気機を有すること。

(2) 制御監視
高さ31mを超える建物及び床面積1,000㎡をこえる地下街では中央管理室で制御監視が行えること。

(3) 空気調和設備の室内環境基準

1. 浮遊粉塵の量	空気1m³につき0.15mg以下
2. 一酸化炭素の含有率	10ppm以下
3. 二酸化炭素の含有率	1,000ppm以下
4. 温度	1) 17度以上28度以下 2) 居室における温度を外気の温度より低くする場合は、その差を著しくしないこと。
5. 相対温度	40％以上70％以下
6. 気流	0.5m毎秒以下
7. ホルムアルデヒドの量	空気1m³につき0.1mg以下

◇火気を使用する室に設ける換気設備の技術基準
建築基準法施行令第20条の3において理論廃ガス量によって換気風量を求めるように定められています。

必要換気量(V) = 定数×理論廃ガス量(K)×燃料消費量(Q)

V: 必要換気量(m³/h)
K: 理論廃ガス量(m³/kW・h)、(m³/kg)
Q: 発熱量(kW)又は燃料消費量(kg/h)

定数: 次の(1)〜(3)に示す。

●火を使用する台所などが主体ですが、居室でも開放型の燃焼器具を使用する場合など、条件によりこれに準ずることが望ましい。

●必要換気量の算出方法は換気方式により、次の3通りがあります。

(1) 排気フードのない場合

$$V = 40K \cdot Q$$

適用: 一般換気扇など

(2) 排気フードI形使用の場合

(排気フードI形とは)
●レンジと同じ幅、奥行を有するフードで、火源等を覆うことができ、廃ガスを一様に捕集できる形状のものをいう。

$$V = 30K \cdot Q$$

適用: レンジフードファンなど

(3) 排気フードII形使用の場合

適用: 下記フードを設けた業務用換気扇

$$V = 20K \cdot Q$$

適用: 下記フードを設けた業務用換気扇
◇改正建築基準法

(1) 概要
住宅の高気密化や化学物質を放散する建材・内装材の使用により新築や増改築の建物で、目がチカチカする、のどが痛い、吐き気がするといった「シックハウス症候群」が社会問題化しています。
その原因となっている化学物質の室内濃度を下げる目的に平成15年7月1日に法改正されたものです。

(2) 改正の内容
シックハウスの原因となる化学物質はいろいろありますが、それらの中では次の2種類のものを規制します。
①ホルムアルデヒド→これを含む建材の[使用制限]
殺菌、防腐剤として使われている他、接着剤として合板などの建材に使われています。
②クロルピリホス→これを含む建材の[使用禁止]
白アリ駆除剤として使われています。

(3) 改装に対する必要な対策
●内装仕上げの制限
①建築材料の区分
内装仕上げに使用される建材はJIS、JAS、国土交通大臣による等級付けがあり、次のような関係があります。

<table>
<thead>
<tr>
<th>ホルムアルデヒド 発散建材材料</th>
<th>第1種</th>
<th>第2種</th>
<th>第3種</th>
<th>規制対象外</th>
</tr>
</thead>
<tbody>
<tr>
<td>シックハウス発散速度 (μg/m²h)</td>
<td>120 超</td>
<td>20 超</td>
<td>5 超</td>
<td>以下</td>
</tr>
<tr>
<td>JIS 表示</td>
<td>旧 E2 又は表示なし</td>
<td>F ☆☆</td>
<td>F ☆☆</td>
<td>F ☆☆</td>
</tr>
<tr>
<td>JAS 表示</td>
<td>旧 Fc2 又は表示なし</td>
<td>F ☆☆</td>
<td>F ☆☆</td>
<td>F ☆☆</td>
</tr>
<tr>
<td>内装仕上げ面積制限</td>
<td>使用禁止</td>
<td>面積制限あり (詳細は次項②をご覧ください。)</td>
<td>面積制限なし (いくらでも使える)</td>
<td></td>
</tr>
</tbody>
</table>

②第2、第3種建材の使用面積制限
第2種第3種はそれぞれ組み合わせて使うこともできますし、第2種だけ、又は第3種だけで使うこともできます。
これらの関係は、下式を満たしなければなりません。

\[
N_2 \times S_2 + N_3 \times S_3 \leq A
\]

表1

<table>
<thead>
<tr>
<th>居室の種類</th>
<th>構換気回数（回/時）</th>
<th>N2</th>
<th>N3</th>
</tr>
</thead>
<tbody>
<tr>
<td>住宅等の居室</td>
<td>0.7以上</td>
<td>1.2</td>
<td>0.20</td>
</tr>
<tr>
<td>上記以外の居室</td>
<td>0.7以上</td>
<td>0.88</td>
<td>0.15</td>
</tr>
</tbody>
</table>

上式は「建材の使用面積に表1のN2及びN3の数値を掛けた結果が居室の床面積より小さいこと」を言う意味です。
(2) 省エネルギー法（エネルギー使用の合理化に関する法律）

昭和54年6月に制定されたこの法律は、エネルギーを使用するもの全ての判断基準が示されているが、平成5年に改正された。省エネルギー法の空調機器に関連する部分を中心に記載する。

1. 空調設備システム設計に関連する判断基準

新建築物について確認申請時に省エネルギー計画書を添付することになっているが、これは建物に関する省エネルギーの手本を示し、目標達成のために指導と助言を与えるためのものである。指導の骨子は以下の通り。

1) 外壁や窓等を通しての熱の損失の防止

建物の外部ゾーン（外壁から5m以内の屋内空間；ペリメーターゾーン）について熱負荷係数を定め、建物の熱的性能をある水準以上として、熱の損失を防止しようとするものである。

\[
\text{年間熱負荷係数 (PAL)} = \frac{ \text{ペリメーターゾーンの年間熱負荷 (MJ/年)} }{ \text{ペリメーターゾーンの床面積 (㎡)} }
\]

この PAL の値が、3 項の表に示す判断基準値以下になるように、外壁、窓等の断熱、日射の遮蔽、プラン等を工夫する必要がある。これを式で表すと次のようになる。

\[
P A L \leq (\text{判断基準値})
\]

ペリメーターゾーン

の年間熱負荷：「外壁、窓等からの貫流熱」＋「外壁、窓等からの日射熱」＋「ペリメーターゾーンでの内部発生熱」＋「取入れ外気量による熱負荷」の総和で示され、年間の使用時間、室内温度などが規定され、算出方法も基準化されている。

2) 空調設備全体で使用するエネルギーの効率的利用

建築物において、空調設備が負荷を処理するために1年間使用するエネルギーを「空調エネルギー消費係数」という基準を設けて、エネルギーの効率的利用を求めている。

\[
\text{エネルギー消費係数 (CEC/AC)} = \frac{ \text{空調設備の年間エネルギー消費量 (MJ/年)} }{ \text{仮想空気調和負荷 (MJ/年)} }
\]

年間エネルギー消費量：建物の使い方、システム等により実際に設備される熱源機、ポンプなどの入力から、年間の使用エネルギーを計算。省エネルギーの要素が多いほど補正値として有利に加味される。仮想空気調和負荷：標準外気条件および基準の外気取入量により計算する仮想的（負荷を計算する一定計算式での）負荷。この CEC の値が、3 項の表に示す判断基準値以下となるように、空調設備システム設計を工夫する必要がある。

P A L : Perimeter Annual Load の略

CEC/AC : Co-efficient of Energy Consumption for Air-Conditioning の略

延べ床面積 2,000㎡以上の事務所、物販店舗、ホテル又は病院、病院又は診療所、学校および飲食店の各建物は、新築確認申請時に、この判断基準が具体的に適用される。
空調設備に関する省エネルギー基準のフロー図

熱負荷の軽減
●新熱化
●日射の遮蔽
●フランの工夫

熱負荷（ペリメータ部分）

気流熱
日射熱

内部発生熱
（インテリア部分）

空気調和負荷
空気調和負荷の軽減
●排熱回収
（全熱交換器等）
●外気取入制御
（CO2制御等）

仮想空気調和負荷
空気調和負荷の軽減
●排熱回収

空調エネルギー消費量の軽減
●高効率化
（VAV、VWH等）

熱源機器容量

エネルギー消費量の軽減
●非持続エネルギー
（太陽熱等）
●熱回収システム

エアコン機器容量

空調エネルギー消費量
重油ーkQ
電力ーkWh
その他

熱源機器エネルギー消費量

空調エネルギー消費量

年間熱負荷係数（PAL）＝ペリメータ部分の熱負荷／ペリメータ部分の床面積

年間

空調エネルギー消費係数（CEC/AC）＝空調エネルギー消費量／仮想空気調和負荷

年間
新しい判断基準の概要
1) 平成 5 年 3 月の改正
(1) 従来、建築主の判断基準は次の 3 種類の用途を対象に制定されていた。
①事務所 ②物品販売業を営む店舗（物販店舗） ③ホテル又は旅館
(2) 今般の法改正により、次の 2 種類の用途について判断基準が追加制定された。
④病院又は診療所 ⑤学校
(3) ①、②、③項については、判断基準値の見直しがなされた。
(4) 判断項目として、次の b 〜 e 項が追加された。
 a. 空気調和設備（従来どおり）
 b. 機械換気設備
c. 照明設備 今般の法改正で追加された。
 e. 給湯設備
 f. 昇降機設備
(5) 対象延床面積は従来どおり 2,000㎡以上

2) 平成 11 年 3 月の改正
(1) PAL / CEC 基準値の対象に飲食店が追加された。
(2) エネルギーの量の熱量への換算に用いる数値について、SI 単位に改める。

PAL / CEC の判断基準値

<table>
<thead>
<tr>
<th>項目</th>
<th>ホテル・旅館</th>
<th>病院・診療所</th>
<th>物品販売店舗</th>
<th>事務所</th>
<th>学校</th>
<th>飲食店</th>
</tr>
</thead>
<tbody>
<tr>
<td>PAL</td>
<td>420</td>
<td>340</td>
<td>380</td>
<td>300</td>
<td>320</td>
<td>550</td>
</tr>
<tr>
<td>CEC / AC</td>
<td>2.5</td>
<td>2.5</td>
<td>1.7</td>
<td>1.5</td>
<td>1.5</td>
<td>2.2</td>
</tr>
</tbody>
</table>

3) 平成 15 年 3 月の改正
(1) 工場に係る措置
改正のポイント
 ① 第一種エネルギー管理指定工場（燃料等 3000kℓ／年以上、電気 1200万kWh／年以上）の対象が、工場だけでなくビル、デパート、病院など全業種に拡大されました。
 ② 第二種エネルギー管理指定工場（燃料等 1500kℓ／年以上、電気 600万kWh／年以上）は、エネルギー使用状況について定期報告が義務付けられました。（これまで記録のみ）
(2) 建築物に係る措置
改正のポイント
 中小規模の建築物（2,000 ㎡以上 5,000 ㎡以下）について適用可能な仕様基準を新たに規定し、建築主が省エネルギー措置の届出を行う際、性能基準（従来方法）と仕様基準とを選択することができることとする。
4）平成18年4月の改正

基本方針：エネルギーの使用の合理化のためにエネルギーを使用する者等が構ずべき措置に関する基本的な事項を大臣が公表。

工場・事業等に係る措置

事業者の努力義務・判断基準の公表

従来の熱、電気の区分を廃し、熱と電気を一体管理し、合算した（原料換算）能率基準等を適用。

第1種エネルギー管理指定工場（エネルギー使用量3,000kWh/年以上）

- 能率管理の選任義務
- 中長期計画の提出義務
- 能率使用状況等の定期報告
- 判断基準に照らし厳しく不十分であるとき大臣の指示、公表、命令（罰則）

第2種エネルギー管理指定工場（エネルギー使用量1,000kWh/年）

- 能率管理の選任義務
- 能率使用状況等の定期報告
- 判断基準に照らし、若しく不十分であるとき、大臣の命令

[今般改正のポイント]
従来分けていた熱と電気の管理について、昨今の工場・事業等における実態を踏まえ、一体的に管理するよう改正
結果として、指定工場等は、計画を要するより、もと要付け、対象工場・事業所数が約1万〜1万7千。
法規制度による確認調査制度の創設（同機関の確認調査を受けた場合において、定期報告の提供等を適用除外）

住宅・建築物に係る措置

建築主・所有者等の努力義務

判断基準の公表

- 住宅外の建築物（新築、増改築、延床等）を行う者、特定建築物所有者に対し、建築物の設計、施工及び維持保全について所管行政庁の指導、助言
- 住宅、設計、施工及び維持保全について、国土交通大臣が指針・公表

特定建築物

- 既存床面積2,000m²以上の住宅を含む建築物
- 特定建築物について、新築、増改築、延床等を行う者（特定建築主等）の、所管行政庁の管理の指定
- 判断基準に照らし厳しく不十分であるとき、所管行政庁の指示、公表
- 出来した特定建築主等の、維持保全の状況に係る所管行政庁の指導、助言
- 判断基準に照らし、若しく不十分であるとき、所管行政庁の指示、勤務（特定建築主等・建築物等に関する都道府県等）

[今般改正のポイント]
新たに、建築物の所有者及びエナジ労務労務制度の対象に追加。
新たに、大規模な改修等の場合における届出を義務付け。
新たに、2,000m²以上の住宅を、特定建築物の対象に加え、届出を義務付け。
新たに、出場事項に関する建築物の維持保全状況を係る届出を義務付け。

輸送に係る措置

1、輸送事業者（貨物・旅客）

事業者の努力義務・判断基準の公表

特定輸送事業者

- 保有車両数・トラック200台以上、鉄道300両以上等
- 中長期計画の提出義務
- 能率使用状況等の定期報告
- 判断基準に照らし厳しく不十分であるとき大臣の指示、公表、命令（罰則）

2、荷主

事業者の努力義務・判断基準の公表

特定荷主

- 年間輸送量が3000トン以上
- 計画の提出義務
- 番号輸送に係るエネルギー使用状況等の定期報告
- 判断基準に照らし、若しく不十分であるとき、大臣の指示、公表、命令（罰則）

[今般改正のポイント]
新たに、輸送に係る措置を追加。（定期報告等は平成19年4月から）

機械器具に係る措置

エネルギー消費機器の製造・輸入事業者の努力義務

特定機器の指定・判断基準の公表（トッププランナー基準）

- 製造自動車、エアコン、テレビ等の省エネルギー基準、それぞれの機器において現在商品化されている製品のうち最も比較対応している機器の性能以上にすることが要求される。
- 財政・金融・税制措置
- 科学技術開発に対する支援
- 国民の理解増進
- 地方公共団体の貢献
- 教育及び広報の実施

一般消費者による情報提供

- 電力・ガス会社等（エネルギー供給事業者）による省エネルギー機器普及情報や情報提供事業の実施と実績の公表
- 家電等販売業者が、単体での分かちやすい省エネルギー情報（家電消費電力、燃費等）の提供

[今般改正のポイント]
新たに、一般消費者による省エネルギー協力の推進を目的とする情報提供の努力義務を規定。

その他

17年6月に成立した地球温暖化対策の推進に関する法律（温対法）の一一部改正法で導入される温床タイプガスの排出量の設定・報告、公表制度において、エネルギー起源二酸化炭素の排出量については省エネルギーに基づく定期報告のデータを活用。
(3) 「エネルギーの使用の合理化に関する法律」の体系

目的

定義

基本方針

工場・事業場

事業者の努力義務

工場に係る措置等

判断基準の公表

建築物に係る措置

建築主の努力義務

機械器具に係る措置

製造業者等の努力義務

その他の措置等

財政、金融上、税制上の措置等

指導・助言

エネルギー管理者の選任

(計画策定に当たり参考すべき指針の公表)

中長期計画の提出

エネルギー管理者以外を管理者とする事業者の指定に当たり管理士の資格を要する

定期の報告

(報告徴収・立入検査)

合理化計画の提出等指示

公表・命令

エネルギー管理の実効

定期の講習受講義務

定期の報告

(報告徴収・立入検査)

労働者に従わない場合

労働者出

届出に係る事項の変更指示

公表

一定量以上製造又は輸入している者に

(報告徴収・立入検査)

勧告

届出に従わない場合

勧告

勧告に従わない場合

公表・命令

関連法規
(3) APF（通年エネルギー消費効率）について

業務用エアコンにおきましては、近年の省エネルギーに対する関心の高まりに伴い、JISが改正され、より使用状態に近いエネルギー性の評価方法として、APF（通年エネルギー消費効率）の表示を行っております。

現在使用されているCOPとは、ある一定の温度条件で運転した場合の1点の性能ポイントであり、季節に応じたエアコンの運転状況は考慮されていません。しかし、実際の使用時には外気温の変化により、冷房/暖房時に必要な能力が消費電力に影響を及ぼします。そこで、実際の使用時に近い状態での評価を行うため、あるモデルケースを定め、年間を通じた総合負荷と総消費電力量を算出し、効率を求めるAPFの表示を追加しています。

APF算出方法

1. 東京地区を対象に、店舗・オフィス用エアコンは「戸建て店舗」を、またビル用マルチエアコン、設備用エアコンは「事務所ビル」をモデルとして年間の総合負荷を算出します。
2. 定格冷房、暖房能力、低温冷房能力に、中間冷房・暖房能力を加えた5つの評価点により、①で求めた年間の総合負荷に応じた消費電力量を算出し、APFを求める。

APF表示の準拠規格

APF表示は、JIS B6616:2006（パッケージエアコンディショナー）とJRA4048:2006（パッケージエアコンディショナーの通年エネルギー消費効率）に基づいて行っています。
※JRA4048:2006は、JIS B6616:2006を基準のために(社)日本冷暖空調工業会が作成した規格です。

APF表示の対象機種

●「店舗・オフィス用エアコン」「ビル用マルチエアコン」「設備用エアコン」のうち、定格冷房能力が28kW以下の「空冷式冷房専用形」及び「空冷式冷房・暖房兼用（ヒートポンプ形）」。

対象外の機種

冷暖同時運転タイプ、水冷式、蓄熱機をもつもの、電算機室用、オールフレッシュ形、機械機器及び食料品向け、車両空調などの特殊機種。

APF算出条件

<table>
<thead>
<tr>
<th>性能</th>
<th>店舗・オフィス用エアコン</th>
<th>ビル用マルチエアコン・設備用エアコン</th>
</tr>
</thead>
<tbody>
<tr>
<td>规格</td>
<td>JRA4048:2006</td>
<td></td>
</tr>
<tr>
<td>地区</td>
<td>東京</td>
<td></td>
</tr>
<tr>
<td>建物用途</td>
<td>戸建て店舗</td>
<td>事務所</td>
</tr>
<tr>
<td>使用期間</td>
<td>冷房 5月23日～10月11日</td>
<td>暖房 11月21日～4月11日</td>
</tr>
<tr>
<td></td>
<td></td>
<td>4月16日～11月8日</td>
</tr>
<tr>
<td></td>
<td></td>
<td>12月14日～3月23日</td>
</tr>
<tr>
<td>使用時間</td>
<td>8:00～21:00</td>
<td></td>
</tr>
</tbody>
</table>
APFを求める手順

1 総空調負荷を求める
①外気温度別発生時間（東京）と温度別冷房・暖房負荷を準備します。地域・建物用途により、空調負荷、運転期間、外気温度発生時間があらかじめ定められており、ここでは東京、戸建店舗を代表例とします。

②冷房時・暖房時の総空調負荷を求めます。外気温度発生時間とその時間ごとの空調負荷を積算・合計すると、総空調負荷を求められます（図中の色が塗られた部分）。

2 期間消費電力量を求める
③外気温度別冷暖・中間・暖房能力線図を準備します（冷房定格・中間・暖房低温の5点から定義された特性により、外気温度・能力線図がひかれます）。

④外気温度別消費電力を求めます。外気温度別空調負荷とこのうちある能力時のCOPから消費電力を算定します。

①冷房負荷と冷房定格能力が交差する点（35℃）から冷房定格COPを求めます。

②冷房負荷と冷房中間能力が交差する点（28℃）の冷房中間COPと冷房定格COPを結んだ線が35℃〜28℃の間の外気温度別のCOPを表し、外気温度〜COP線図が得られます。

③外気温度別冷房負荷（kW）をそのときのCOPで除すと消費電力が得られれます。（同様に暖房時の外気温度別消費電力を求めます。）

④の結果から、外気温度別消費電力をプロットします。

⑥期間消費電力量を求めます。①の外気温度発生時間と⑤の外気温度別消費電力を積算・合計すると期間消費電力量が求められます。

3 APFを求める
⑦総空調負荷を期間消費電力量で除します。これでAPFが求められます。

※APFの大小はCOPの大小とは必ずしも一致しません。
全国 10 都市の APF、総空調負荷、消費電力量の一覧表
(戸建店舗、天井カセット形 4 方向吹出しタイプの場合)

〈スーパーパワーエコ R〉

<table>
<thead>
<tr>
<th>郡</th>
<th>総空調負荷 (kW)</th>
<th>消費電力量 (kWh)</th>
</tr>
</thead>
<tbody>
<tr>
<td>仙台</td>
<td>2928</td>
<td>3872</td>
</tr>
<tr>
<td>東京</td>
<td>3024</td>
<td>3944</td>
</tr>
<tr>
<td>名古屋</td>
<td>2696</td>
<td>3602</td>
</tr>
<tr>
<td>愛知県</td>
<td>2672</td>
<td>3580</td>
</tr>
<tr>
<td>福岡</td>
<td>2312</td>
<td>3213</td>
</tr>
<tr>
<td>鹿児島</td>
<td>2065</td>
<td>2975</td>
</tr>
<tr>
<td>長崎</td>
<td>1825</td>
<td>2735</td>
</tr>
<tr>
<td>北海道</td>
<td>1585</td>
<td>2495</td>
</tr>
<tr>
<td>北海道</td>
<td>1585</td>
<td>2495</td>
</tr>
</tbody>
</table>

〈スマートエコ R〉

<table>
<thead>
<tr>
<th>郡</th>
<th>総空調負荷 (kW)</th>
<th>消費電力量 (kWh)</th>
</tr>
</thead>
<tbody>
<tr>
<td>仙台</td>
<td>2928</td>
<td>3872</td>
</tr>
<tr>
<td>東京</td>
<td>3024</td>
<td>3944</td>
</tr>
<tr>
<td>名古屋</td>
<td>2696</td>
<td>3602</td>
</tr>
<tr>
<td>愛知県</td>
<td>2672</td>
<td>3580</td>
</tr>
<tr>
<td>福岡</td>
<td>2312</td>
<td>3213</td>
</tr>
<tr>
<td>鹿児島</td>
<td>2065</td>
<td>2975</td>
</tr>
<tr>
<td>長崎</td>
<td>1825</td>
<td>2735</td>
</tr>
<tr>
<td>北海道</td>
<td>1585</td>
<td>2495</td>
</tr>
<tr>
<td>北海道</td>
<td>1585</td>
<td>2495</td>
</tr>
</tbody>
</table>

期間消費電力量 (kWh)

<table>
<thead>
<tr>
<th>郡</th>
<th>総空調負荷 (kW)</th>
<th>消費電力量 (kWh)</th>
</tr>
</thead>
<tbody>
<tr>
<td>仙台</td>
<td>2928</td>
<td>3872</td>
</tr>
<tr>
<td>東京</td>
<td>3024</td>
<td>3944</td>
</tr>
<tr>
<td>名古屋</td>
<td>2696</td>
<td>3602</td>
</tr>
<tr>
<td>愛知県</td>
<td>2672</td>
<td>3580</td>
</tr>
<tr>
<td>福岡</td>
<td>2312</td>
<td>3213</td>
</tr>
<tr>
<td>鹿児島</td>
<td>2065</td>
<td>2975</td>
</tr>
<tr>
<td>長崎</td>
<td>1825</td>
<td>2735</td>
</tr>
<tr>
<td>北海道</td>
<td>1585</td>
<td>2495</td>
</tr>
<tr>
<td>北海道</td>
<td>1585</td>
<td>2495</td>
</tr>
</tbody>
</table>
(4) ビル管理法

建築物における衛生的環境の確保に関する法律（昭和45年4月14日制定）

① 目的
「この法律は多数の者が使用し、又は利用する建築物の維持管理に関し環境衛生上必要な事項等を定めることにより、その建築法における衛生的な環境の確保を図り、もって公衆衛生の向上及び増進に資することを目的とする。」（法第1条）
即ち、特定建築物を定め、その居室の空気環境基準を定めた法律である。

② ビル管理法適用建築物
（1）建物の用途が興行場、百貨店、店舗、事務所、学校等であること。
（2）建築物の規模が延べ3,000m²以上であること。（学校は8,000m²以上）（用途区分細目）

③ 適用対象建築物（特定建築物）
映画館、劇場、演芸場、百貨店、スーパー、公会堂、公民館、市民ホール、結婚式場、図書館、博物館、美術館、展示場、麻雀店、パチンコ店、ポーリング場、ダンスホール、卸売店、小売店、飲食店、喫茶店、バー、キャバレー、理容室、事務所、銀行、官公庁、小中高専大学、養護学校、幼稚園、各種学校、研修所、旅館、ホテル、サウナ、簡易宿泊所、下宿など。

④ 適用除外建築物
病院、工場、作業場、倉庫ビル、駐車場ビル、地上に建物がない地下室、自然科学系研究所、駅舎、神社、寺院、共用住宅、寄宿舎、体育館など。

⑤ 延べ面積の算定基準
（1）小中高校、大学、高専、盲学校、ろう学校、養護学校、幼稚園は8,000m²以上であること。（洋裁学校や英会話教室などの各種学校は、一般の特定建築物と同じで3,000m²以上）
（2）上記の学校以外の建築物は3,000m²以上であること。
（この面積には廊下、階段、便所など共有部分、空調機械室、電気室、建物内の倉庫、事務所に付属した駐車場などの面積も含まれる。）
関連法規

⑥ ビル管理法の空気環境基準

<table>
<thead>
<tr>
<th>項</th>
<th>目</th>
<th>基 準</th>
<th>測定器</th>
</tr>
</thead>
<tbody>
<tr>
<td>①浮遊粉塵</td>
<td>0.15mg/m³以下</td>
<td>ローボリューム又は厚生大臣の指定した者により当該機器を基準として構成された機器</td>
<td></td>
</tr>
<tr>
<td>②一酸化炭素</td>
<td>CO</td>
<td>10ppm以下</td>
<td>検知管</td>
</tr>
<tr>
<td>③炭酸ガス</td>
<td>CO₂</td>
<td>1,000ppm以下</td>
<td>検知管</td>
</tr>
<tr>
<td>④温度</td>
<td>17〜28℃</td>
<td>0.5度目盛りの温度計</td>
<td></td>
</tr>
<tr>
<td>⑤相対湿度</td>
<td>40〜70%</td>
<td>0.5度目盛りの乾湿球湿度計</td>
<td></td>
</tr>
<tr>
<td>⑥気流</td>
<td>0.5m/sec以下</td>
<td>0.2m/sec以下の測定できる風速計</td>
<td></td>
</tr>
<tr>
<td>⑦ホルムアルデヒドの量</td>
<td>0.1mg/m³以下</td>
<td>検知管</td>
<td></td>
</tr>
</tbody>
</table>

※この法律の空気環境基準は、快適性などの観点から目標値に近い推奨値といった基準値をとっている。

⑦ 空気環境の測定回数及び測定箇所（管理基準）

<table>
<thead>
<tr>
<th>項</th>
<th>ビル管理法</th>
<th>都指導基準</th>
</tr>
</thead>
<tbody>
<tr>
<td>空気環境測定</td>
<td>2ヶ月以内ごとに1回</td>
<td>定期測定 毎月1回</td>
</tr>
<tr>
<td>測定回数</td>
<td></td>
<td></td>
</tr>
<tr>
<td>測定箇所</td>
<td>各階ごとに測定</td>
<td>原則として各階ごとに測定点は用途・規模により決める</td>
</tr>
</tbody>
</table>

この基準を守るために、空調設備としては特に浮遊粉塵対策として、高性能フィルターの設置が必要となる。また、対象となる建築物の所有者、及び占有者は、建築物環境衛生管理技術者の資格を持つ人を選任し、その建築物の環境衛生の維持管理（監督）をさせることが必要である。

特定建築物は所在地を管轄する保健所に届出が必要となる。

◇ビル管理法の改正施行令公布【平成15年4月】

①対象の拡大
これまでは、空調方式が中央管理（セントラル方式）の建築物だけが規制の対象でしたが、改正によって、個別空調機（ビル用マルチ等）の建築物も対象になりました。

②規制の対象
特定用途：①興行場、百貨店、集会場、博物館、美術館、遊技場　②店舗、事務所　③学校（8000m²以上）④旅館延床面積：3000m²以上の建築物

③測定の回数
2ヶ月以内ごとに1回の測定を行わなければなりません。

④病原体の汚染対策
クーリングタワー、加湿器や空調機のドレンパン等がレジオネラ菌に汚染されることを防止する措置が義務付けられました（改正で追加）。

⑤罰則
命令または処分に違反した場合、3万円以下の罰金。改正によって罰則が強化されました。
関連法規

(5)騒音規制法

（目的）
第1条 この法律は、工事及び事業場における事業活動並びに建築工事に伴って発生する相当範囲にわたる騒音について必要な規制を行うとともに、自動車騒音に係る許容限度を定めること等により、生活環境を保全し、国民の健康の保護に資することを目的とする。

現在、騒音に関する規制は、国の「騒音規制法」と地方自治体の「公害防止条例」とがありますが、「騒音規制法」は全国レベルでの基本的事項を述べているに過ぎず、具体的規制は「騒音規制法」に基づいて制定された「公害防止条例」により行なわれています。

従って、ここでは各地方自治体による騒音規制の概要を述べることとします。

①特定施設の届出

一般に特定施設の場合は、その設置工事に着手する30日前に次の事項を知事に届出なければなりません。

届出内容（参考例）

・氏名、住所
・工場、事業場の名称および所在地
・施設の種類、能力、数等
・騒音防止の方法
・施設の配置図
・事業内容等

その他、届出内容に変更が生じた場合にも届出が必要となります（施設の形式、数の変更、施設の継承、廃止など）。

■特定施設とは
騒音を発生する機器のうち、特に著しいものを指定し「特定施設」としています。

特定施設の場合には設置、変更時の届出および届出時の騒音対策のチェックなどきびしく監視する体制をとっています。

空調機関係では一般にその対象となるものはありませんが各地方自治体で解釈が異なる為、各々確認する必要があります。

※圧縮機とは、通常「空気圧縮機（エアコンプレッサー）」を指している。

②規制基準
公害を防止する為に敷地境界線上での許容騒音値（Aスケール、オーバーオール値）を決め規制基準としています。

この規制基準を遵守すべき対象は各条例毎に異なっています。
③ 公害防止条例

1) 騒音規制法の特定施設の抜粋

騒音規制の特定施設（東京都の場合）

(1) 金属加工機械
 イ. ロール延機械 ハ. ベンディングマシン
 ニ. 液压プレス ベ. 機械プレス ト. 構造機
 チ. ワイヤーフォーミングマシン ヒ. プラスチャンプ ニ. タンブラ

(2) 空気圧縮機及び送風機（原動機の定格出力が7.5kW以上のものに限る。ただし、冷凍機、冷凍機応
 用製品及び装置に用いるものは除く。）

(3) 土石用又は鉱物用の破砕機、殻砕機、ふるい及び分級機

(4) 鎖機（原動機を用いるものに限る。）

(5) 建設用資材製造機械
 イ. コンクリートプラント ロ. アスファルトプラント

(6) 穀物用製粉機

(7) 木材加工機械
 イ. ドラムバーカー ロ. チッパー ニ. 砕木機
 ニ. 茎のこ盤 ベ. 丸のこ盤 ニ. かんな盤

2）騒音規制基準（単位：dB）

図表3-1 騒音規制基準値（東京都の場合）

<table>
<thead>
<tr>
<th>区域</th>
<th>朝</th>
<th>時間</th>
<th>音量(dB)</th>
</tr>
</thead>
<tbody>
<tr>
<td>第1種（住居専用地区）</td>
<td>40</td>
<td>早朝</td>
<td></td>
</tr>
<tr>
<td>第2種（住居地区）</td>
<td>45</td>
<td>午前6時</td>
<td></td>
</tr>
<tr>
<td>第3種（商業地域等）</td>
<td>55</td>
<td>午後7時</td>
<td></td>
</tr>
<tr>
<td>第4種（繁華街）</td>
<td>60</td>
<td>午後8時</td>
<td></td>
</tr>
</tbody>
</table>

図表3-2 騒音規制基準値（大阪府の場合）

大阪府公害防止条例施行規則 第7条、別表第7「騒音に係る排出基準」

<table>
<thead>
<tr>
<th>区域区分</th>
<th>朝</th>
<th>時間</th>
<th>音量(dB)</th>
</tr>
</thead>
<tbody>
<tr>
<td>第1種区域（住居専用地区）</td>
<td>45</td>
<td>午前6時</td>
<td></td>
</tr>
<tr>
<td>第2種区域（住居地区及び市街化調整区域）</td>
<td>50</td>
<td>午前8時</td>
<td></td>
</tr>
<tr>
<td>第3種区域（商業地域）</td>
<td>60</td>
<td>午後6時</td>
<td></td>
</tr>
<tr>
<td>第4種区域（既設の学校、保育所等の敷地の周囲50メートルの区域及び第二種区域の境界線から15メートル以内の区域）</td>
<td>60</td>
<td>午後9時</td>
<td></td>
</tr>
<tr>
<td>その他区域</td>
<td>70</td>
<td>夜間</td>
<td></td>
</tr>
</tbody>
</table>

注1：工業地域
(6) 振動規制法

(目的)
第1条 この法律は、工場及び事業場における事業活動並びに建設工事に伴って発生する相当範囲にわたる振動について必要な規制を行うとともに、道路交通振動的に係わる要請の措置を定めること等により、生活環境を保全し、国民の健康の保護を目的とする。振動に関する規制体系及び基本的な考え方は前項の「騒音規制」と全く同じです。従って具体的な規制は各地方条例によって行なわれます。

① 特定施設の届出
法では、7.5kW以上の圧縮機を搭載した機種が特定施設となります。（振動令別表第一）ただし、地方によっては、冷凍空調機の圧縮機を含むか否かの解釈が異なりますので、公害担当課に確認が必要です。
また、騒音規制法と異なり送風機は対象外となっていますが、これも地方によっては、送風機、ポンプ等を含む場合もありますので、注意が必要です。
② 規制基準（振動レベル）
法では基準の範囲（下表）のみを定めた具体的基準は知事（条例で）定めるものとしています。（東京都の例を図表4-1に示します。）

<table>
<thead>
<tr>
<th>時間の区分</th>
<th>昼間</th>
<th>夜間</th>
</tr>
</thead>
<tbody>
<tr>
<td>区域</td>
<td></td>
<td></td>
</tr>
<tr>
<td>第1種区域</td>
<td>60〜65</td>
<td>55〜60</td>
</tr>
<tr>
<td>第2種区域</td>
<td>65〜70</td>
<td>60〜65</td>
</tr>
</tbody>
</table>
（記）1. 昼間：午前（5.6.7.8）時〜午後（7.8.9.10）時
夜間：午後（7.8.9.10）時〜翌日の午前（5.6.7.8）時
（）内の数字のいずれかをとります。
2. 第1種区域：特に静穏を要する区域及び住宅区域
第2種区域：居住用と併せて商業、工業用に使用されている区域及び主として工業用に使用されている区域
3. 測定地点は「敷地境界線上の地表」となっています。
4. 学校、保育所、病院、図書館、老人ホームなどの周囲（約50m以内）では基準値から5dB減じた値とします。
今後地方条例では、特定施設の対象など規制範囲が拡大される可能性（騒音では拡大している所が多い）がある為、特定施設の設置に際しては、所管の公害担当課で確認することが必要です。

振動規制の特定施設（東京都の場合）

① 金属加工機械
イシ電圧プレス　ロ 機械プレス　ハ せん断機
ニ 鋼鉄機　ホ、ワイヤーフォージングマシン
② 压縮機（原動機の定格出力が7.5kW以上のものに限る。ただし、冷凍機、冷凍機応用製品及び装置に用いるものを除く。）
③ 土石用又は鉱物用の破砕機、摩耗機、ふるい及び分級機
④ 鉄機（原動機を用いるものに限る。）
⑤ コンクリートブロックマシン並びにコンクリート管製造機械及びコンクリート柱製造機械
⑥ 木材加工機械
イ、ドラムバーカー　ロ、チッパー
⑦ 印刷機械（原動機の定格出力が2.2kW以上のものに限る。）
図表 4-1 東京都公害防止条例の振動規制基準値
東京都公害防止条例 第 68 条、別表第 10「日常生活等に適用する規制基準」

<table>
<thead>
<tr>
<th>区域の区分</th>
<th>時間の区分</th>
<th>振動源の存する敷地と隣地との境界線における地盤の振動の大きさ（単位デシベル）</th>
</tr>
</thead>
<tbody>
<tr>
<td>第 1 種 区域</td>
<td>1. 第一種住居専用地域
2. 第二種住居専用地域
3. 住居地域
4. 無指定地域（第二種区域に該当する区域を除く。）</td>
<td>午前 8 時から午後 7 時まで
午後 7 時から翌日午前 8 時まで</td>
</tr>
<tr>
<td></td>
<td></td>
<td>60
55</td>
</tr>
<tr>
<td>第 2 種 区域</td>
<td>1. 近隣商業地域
2. 商業地域
3. 準工業地域
4. 工業地域
5. 前各号に掲げる地域に接する地域及び水面</td>
<td>午前 8 時から午後 8 時まで
午後 8 時から翌日午前 8 時まで</td>
</tr>
<tr>
<td></td>
<td></td>
<td>65
60</td>
</tr>
<tr>
<td></td>
<td>夜間</td>
<td>65
60</td>
</tr>
</tbody>
</table>

・ただし、学校、保育所、病院、診療所、図書館及び老人ホームの敷地の周囲おおむね 50m の区域内における規制基準は、当該値から 5 デシベルを減じた値とする。

図表 4-2 大阪府公害防止条例の振動規制基準値
大阪府公害防止条例施行規制第 7 条、別表第 8「振動に係る排出基準」

<table>
<thead>
<tr>
<th>区域の区分</th>
<th>時間の区分</th>
<th>昼間</th>
<th>夜間</th>
</tr>
</thead>
<tbody>
<tr>
<td>第一種区域</td>
<td>1. 既設の学校、保育所等の敷地の周囲 50m の区域及び第一種区域の境界線から 15m 以内の区域</td>
<td>60</td>
<td>55</td>
</tr>
<tr>
<td>第二種区域</td>
<td>既設の学校、保育所等の敷地の周囲 50m の区域及び第一種区域の境界線から 15m 以内の区域</td>
<td>65
60</td>
<td>60
60</td>
</tr>
<tr>
<td></td>
<td>その他の区域</td>
<td>70</td>
<td>65</td>
</tr>
</tbody>
</table>
(7)高圧ガス保安法

この法律は、高圧ガスによる災害を防止するため、高圧ガスの製造・販売・貯蔵その他の取扱いなどを規制したものであります。

冷凍空調装置に使用される冷媒のほとんどは「高圧ガス」なるため、冷凍空調設備の業務に従事する者はこの法律を十分理解し、法の規定に従って保安を確保する必要があります。

① 高圧ガスの定義

（1）圧縮ガス（気体を圧縮したもの）

常用の温度で圧力が 1MPa 以上になる圧縮ガスであって、現にその圧力が 1MPa 以上であるもの。または、温度 35℃において圧力が 1MPa 以上になる圧縮ガス。（圧力はゲージ圧力）

（2）液化ガス（冷媒等）

常用の温度で圧力が 0.2MPa 以上の液化ガス。
または、0.2MPa となる温度が 35℃以下の液化ガス。

（3）アセチレンガス

常用の温度で圧力が 0.2MPa 以上のもの。
または、15℃において 0.2MPa 以上となる圧縮アセチレンガス。

「常用の温度」：その製造過程でなり得る最高の温度であり、故障などによる異常温度ではない。また、気体状態の高圧ガスと液体状態の高圧ガスとの容器の中などで共存する場合は、全体を「液化ガス」として運用される。

「高圧ガスの製造」：冷凍装置を運転することは、高圧ガスの製造となる。冷凍装置は、圧縮機が冷媒ガスを圧縮して高圧の状態にすることであり、法律上ではこのことを“高圧ガスの製造”といい、冷凍設備の使用者（ユーザー）が高圧ガスの製造者となる。

●フルオロカーボンの温度と圧力

<table>
<thead>
<tr>
<th>冷媒ガスの種類</th>
<th>0.2MPaとなる場合の温度（℃）</th>
<th>35℃における圧力（MPa）</th>
<th>備考</th>
</tr>
</thead>
<tbody>
<tr>
<td>フルオロカーボン22</td>
<td>-16</td>
<td>1.26</td>
<td></td>
</tr>
<tr>
<td>フルオロカーボン134a</td>
<td>+1</td>
<td>0.787</td>
<td></td>
</tr>
<tr>
<td>フルオロカーボン407C</td>
<td>-11（飽和ガス）</td>
<td>1.45（飽和ガス）</td>
<td>高圧ガスに該当する</td>
</tr>
<tr>
<td>フルオロカーボン410A</td>
<td>-27（飽和ガス）</td>
<td>2.04（飽和ガス）</td>
<td></td>
</tr>
</tbody>
</table>
② 高圧ガス保安法による規制の概要

冷凍設備に関する法の適用対象を下表に示します。

（１）適用対象と必要な手続き

<table>
<thead>
<tr>
<th>区分</th>
<th>対象</th>
<th>適用範囲</th>
<th>必要な手続き</th>
</tr>
</thead>
<tbody>
<tr>
<td>高圧ガス製造者</td>
<td>空調・冷凍などを行うチリンガニット、冷凍機、パッケージエアコンを使用する者：冷凍設備の所有者</td>
<td>第一種製造者 1日の冷凍能力が50トン以上のもの （フルオロカーボンの場合）</td>
<td>高圧ガス製造許可申請</td>
</tr>
<tr>
<td></td>
<td></td>
<td>第二種製造者 1日の冷凍能力が20トン以上50トン未満。（フルオロカーボン(※)の場合）</td>
<td>高圧ガス製造届</td>
</tr>
<tr>
<td>高圧ガス販売事業者</td>
<td>①冷媒ガスの販売業者 ②機器に冷媒ガスを充満する修理・サービス業者。 ③冷凍機など機器の据付施工を行な設備業者 ④チリンガニット、冷凍機の製造メーカー ⑤向上機器の販売業者</td>
<td>一般高圧ガスの冷媒のほか、フルオロカーボン、アンモニアなどの冷媒の販売 修理や施工のとき容器を取扱い、充満するガスの量に関わりなく適用 販売する機器の1日の冷凍能力が50トン以上（フルオロカーボンの場合）の冷凍設備</td>
<td>高圧ガス販売事業届</td>
</tr>
<tr>
<td>機器製造事業者</td>
<td>压縮機、凝縮器、などの部品を配管で連絡して組立てる冷凍機（空調機）の製作メーカー や、冷媒配管を施設、修理する設備業者 サービス業者</td>
<td>1日の冷凍能力が50トン以上の冷凍機など（フルオロカーボン(※)の場合）</td>
<td>不要 機器は「技術上の基準」に従って製造しなければならない。</td>
</tr>
</tbody>
</table>

（フルオロカーボン(※)）は不活性のフルオロカーボン冷媒を示します。
関連法規

(2) 冷媒ガスの種別による規制体系

<table>
<thead>
<tr>
<th>冷媒ガス</th>
<th>区分/設備</th>
<th>設備の容量と規制の内容</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>5</td>
<td>20</td>
</tr>
<tr>
<td>不活 性の フルオロカーボン</td>
<td>適用除外</td>
<td>その他製造者</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>非ユニット形とは</td>
<td>定期自主検査</td>
<td>冷凍保安責任者</td>
</tr>
<tr>
<td></td>
<td>保安検査(R 114を除く)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(注記) 300トンの上限を除き2016年12月</td>
<td></td>
</tr>
</tbody>
</table>

	5	20	50 トン	
	適用除外	その他製造者	第二種製造者	第一種製造者
ユニット形とは	定期自主検査	保安検査(R 114を除く)		
	保安検査(R 114を除く)			
	(注記) 300トンの上限を除き2016年12月			

	3	5	20	50 トン
	適用除外	その他製造者	第二種製造者	第一種製造者
不活 性以外の フルオロカーボン	定期自主検査			
	冷凍保安責任者			
	保安検査(R 21を除く)			

	3	5	20	50 トン
	適用除外	その他製造者	第二種製造者	第一種製造者
アンモニア	定期自主検査			
	保安検査			
	保安検査			

東芝キヤリック空調システムズ 店舗・オフィス・ビル用空調システム 関連資料・法規編 1425
③ 保安に関する責任者の選任等（フルオロカーボン冷凍設備）

<table>
<thead>
<tr>
<th></th>
<th>保安責任者の選任</th>
<th>危害予防規程</th>
<th>保安教育</th>
</tr>
</thead>
<tbody>
<tr>
<td>第一種製造者</td>
<td>有資格の冷凍保安責任者および代理者が必要。（注1）</td>
<td>危害予防規程を定め、都道府県知事に届ける。</td>
<td>保安教育計画を定める（都道府県知事に届出不要。）</td>
</tr>
<tr>
<td>第二種製造者</td>
<td>不要（注2）</td>
<td>不要</td>
<td>保安教育を行うこと。</td>
</tr>
<tr>
<td>高圧ガス販売業者</td>
<td>フルオロカーボン冷媒の場合不要</td>
<td>不要</td>
<td>保安教育を行うこと。</td>
</tr>
<tr>
<td>機器製造者</td>
<td>不要</td>
<td>不要</td>
<td>不要</td>
</tr>
</tbody>
</table>

（注1）第一種高圧ガス製造者に対する緩和事項
冷凍保安規則で定めるいわゆる“ユニット形”の設備は、第一種製造者であっても、冷凍保安責任者（有資格者）を選任する必要はない。
ただし、取扱責任者（無資格でも可）を選任することになっている。（危害予防規程による）
“ユニット形”ではない設備を使用する第一種製造者は、有資格の「冷凍保安責任者」および代理者を選任する必要がある。
（注2）有資格者は不要だが、冷凍機を運転する担当者（作業責任者）を決めて管理させることを望ましい。

④ 法定冷凍能力の算定基準

製造許可や製造届を行う際の基準となる法定冷凍トン（正式には1日の冷凍能力という）は、冷卻能力をあらわすUS冷凍トンとは異なり、保安上の係数として定められた基準により算出します。

1. 往復動式、回転式およびスクリュー式の場合

$$ R = \frac{V}{C} \quad (\text{m}^3/\text{h}) $$

- \(R \)：1日の冷凍能力（法定冷凍トン）
- \(V \)：圧縮機の標準1時間当たりのピストン押しのけ量
- \(C \)：冷凍能力算定基準係数

C値の例

<table>
<thead>
<tr>
<th>冷媒ガスの種類</th>
<th>気筒1個の体積</th>
<th>気筒1個の体積</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>5,000cm³以下</td>
<td>5,000cm³を超えるもの</td>
</tr>
<tr>
<td>フルオロカーボン22</td>
<td>8.5</td>
<td>7.9</td>
</tr>
<tr>
<td>フルオロカーボン407C</td>
<td>9.8</td>
<td>9.2</td>
</tr>
<tr>
<td>フルオロカーボン134a</td>
<td>14.4</td>
<td>13.5</td>
</tr>
<tr>
<td>フルオロカーボン410A</td>
<td>5.7</td>
<td>5.3</td>
</tr>
</tbody>
</table>

（注記）保安法の冷凍能力の算定は、冷凍機が蒸発温度-15℃、凝縮温度30℃、過冷却温度5℃の運転条件のときの冷却能力を、日本冷凍トンで表したものに相当するように定められています。
5 機器の法定冷凍能力

●チリングユニット

一体型のチリングユニットは、技術資料や仕様表に法定冷凍能力を記載しています。適用区分に合わせた手続きが必要です。

●空冷モジュールチラー、水冷モジュールチラー

モジュールの親機と子機は、独立した冷媒回路で構成され単独に据付される、法定20トン未満の冷凍機です。（届出不要）

●パッケージエアコン

パッケージエアコン（スプリット型で複数台の室外機）は従来、第二種製造設備（届出）としていましたが、個々の室外機は単独に設置される法定20トン未満のものであり、室内機の冷媒系統も独立しており、合算しなくてもよいと解釈できます。（届出不要）

●ターボ冷凍機（R-134a機種）

<table>
<thead>
<tr>
<th>法定冷凍トン</th>
<th>区 分</th>
<th>冷凍保安責任者の資格</th>
</tr>
</thead>
<tbody>
<tr>
<td>法定50トン以上（モータ出力60kW以上）</td>
<td>第一種製造設備（許可申請）</td>
<td>取扱責任者を選任（無資格者でも可）</td>
</tr>
</tbody>
</table>

一体型で搬入・据付を行うユニット形が標準仕様です。
（注記）ユニット形の規定の上限値「300トン未満」は削除されました。（平成16年12月17日改正）
改正前に許可された300トン以上の製造施設については、従前どおり冷凍保安責任者（有資格者）の選任が継続して必要です。
⑥ 高圧ガス製造届・許可申請の手続き

（1）第二種高圧ガス製造者（法定冷凍能力20トン以上50トン未満）の届出手続き

1日の冷凍能力が20トン以上50トン未満のフルオロカーボン冷凍設備を使用して冷凍のためガスを圧縮し、または液化して高圧ガスの製造をする者は、運転開始の20日前に、製造する高圧ガスの種類、製造のための施設の位置、構造および設備ならびに製造方法を記載した書面を添えて、都道府県知事に届出なければならない。

なお、製造施設明細書には
1. 製造の目的
2. 製造設備の種類
3. 1日の冷凍能力
4. 壓縮機の性能
5. 技術上の基準に対応する事項

などを記載しなければなりません。

保安管理について、第一種製造者のような危害予防規程等はなく、使用開始時、終了時および1日1回以上設備の作動状態を点検すること……等の「製造方法の基準」に従って管理します。

また設備変更を行う場合には、変更届が必要です。

第二種高圧ガス製造者…届け出設備

提出・受理

運転開始の20日前に

（1）高圧ガス製造届書…都道府県知事に提出
（以下の（2）～（8）は添付書類※）

（2）高圧ガス製造施設等明細書
（3）事業所付近の案内図（最寄駅から）
（4）製造施設の位置、付近の状況を示す図面
（5）製造施設（機械室）内の設備機器配置図（平面、立面）
（6）配管設備（プライン、冷水、温水、冷却水）系統図
（7）冷媒配管系統図
（8）電気配線図（インターロックを含む）

（注記）
・ 添付書類※の内容は、都道府県の指示に従って作成してください。
・ 委任状は工場長など事業所の長が、会社の代表者にかわたって届出を行うとき必要です。
・ 届け出に手数料は不要です。
高圧ガス製造届書記入例

<table>
<thead>
<tr>
<th>高圧ガス製造届書</th>
<th>冷凍</th>
<th>×整理番号</th>
<th>第</th>
<th>号</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>×受理年月日</td>
<td>平成</td>
<td>年</td>
<td>月</td>
</tr>
</tbody>
</table>

名 称
（事業所の名称も含む）
事業所は、「高圧ガス製造事業所」のことである。そして、使用場所の名称も記入する。

事務所（本社）所在地
事業所とは、上記事業所を統括する本社、本店をいう。

事業所所在地
冷凍設備がある事業所の住所

製造をする高圧ガスの種類
使用する冷媒ガス名を記入する。

平成 年 月 日
法人のときは、法人名（本社、本店など）を記入し、法人を代表する者（取締役社長、理事長、組合長など）の役職名と氏名を記入し、法人印、代表印を捺印すること

代表者氏名

個人企業のときには、責任者である店主個人の氏名を記入し捺印すること。実印であることを要しない。ただし、代表者の委任状（正副各1部）により事業所の管理責任者（支店長、工場長などを）を、その事業所のみの代表者としてもよい。

知事 殿

備考 ×印の項は記入しないこと。

高圧ガス保安法関係遵守事項
1. 届出設備の保守ならびに運転は規定で定められたとおり行うこと。（法第12条）
2. 施設を変更するときは事前に届け出をすること。（法第14条）
3. 製造（使用）を廃止したときは、知事に届け出をすること。（法第21条）

高圧ガス製造届書は製品に付属して出荷されます。
施設の位置及び構造（付近の状況図）並びにプライン等共通状況を示す系統図
（移動式の場合には、車両登録番号、車種〈名称〉等）

（記入例を参照し、図面などを添付する）

施設の基準

<table>
<thead>
<tr>
<th>付近の火気</th>
<th>火気の区分</th>
<th>最小距離</th>
</tr>
</thead>
<tbody>
<tr>
<td>警戒標</td>
<td></td>
<td></td>
</tr>
<tr>
<td>濁消しない構造</td>
<td></td>
<td></td>
</tr>
<tr>
<td>振動、衝撃、腐食等により冷媒ガスが漏れない構造</td>
<td></td>
<td></td>
</tr>
<tr>
<td>保安上重要なバルブ</td>
<td>誤操作防止</td>
<td>表示</td>
</tr>
<tr>
<td>配管の流体名、方向</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

（特記事項）

施設所在地

<table>
<thead>
<tr>
<th>企業</th>
<th>会社名</th>
<th>冷凍定規施設工事</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>事業所認定番号</td>
</tr>
<tr>
<td></td>
<td></td>
<td>作成</td>
</tr>
<tr>
<td></td>
<td></td>
<td>氏</td>
</tr>
</tbody>
</table>

（注）毒性ガスを冷媒とする施設については、「消火器」「排出管」「警報設備」「除害設備」について、「（特記事項）」の欄に記載すること。
高圧ガス製造施設等明細書記入例

図面は、別紙にて作成し、本図に添付すること。
図面は、次の4種類を作成するのが原則です。
1. 事業所付近の案内図
 - 主要交通機関の駅、あるいは目立やすい建物、目標物などを起点とし、事業所までをわかりやすい道順で示し、距離、所要時間等を記入する。
2. 製造施設付近状況図
 - 事業所の敷地、建物内の冷蔵施設の位置、付近の状況を示す図面をかく。
3. 機械室内機器配置図（一般的には平面図のみのでよい）
 - 機械室内（空冷冷蔵の場合は設置区域内外）の冷蔵装置、パイロット、冷却水ポンプ、換気装置、警戒標、出入口、その他補機等の配置図面をかく。
 - 冷蔵装置とパイロットとの距離、作業空間距離、その他諸寸法を記入する。
4. 冷凍水配管系統図（チャートの場合のみ）
 - 冷凍水配管、冷凍水槽、給水配管、冷凍装置等の配管接続状況を示す系統図を作成する。

関連法規

図面の位置及び構造（付近の状況図）並びにプラン等共通状況を示すシステム（移動式の場合は、直轄登録番号、事業（名称）等）

冷凍装置と火気の最も近接した位置の距離寸法を記入する。8(6)参照

振動により配管等が切損したり、機械設備に誤って物がぶつかり破損したり、あるいは腐食により孔があたりとして、冷媒が漏れたりしないよう配管をすることは義務付けられている。この目的のために簡単に記載する。

保安上重要なバルブは開閉方向、開閉状態の表示が義務付けられている。

保安上重要なバルブに係る配管には、管内を流れる流体の種類、流れの方向を表示する義務がある。

都道府県より指示された事項を記入する。

●滞留しない構造
机械室内に設置する換気装置の種類、換気量を記入する。換気量は8(5)参照

●保安上重要なバルブの設置例
冷却水・冷凍水バルブでは「ハンダルを取外し保管する」、圧縮機吐出バルブでは「特殊工具により操作する」。
高圧ガス製造施設等明細書（例）

<table>
<thead>
<tr>
<th>製造の目的</th>
<th>冷房</th>
<th>製造設備の種類</th>
<th>0定置</th>
<th>移動</th>
<th>直接膨張式</th>
<th>半段圧縮元冷凍</th>
<th>凍結器</th>
<th>水冷式</th>
<th>一日の冷凍能力</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>50/60Hz</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>32.6/39.2トン</td>
</tr>
</tbody>
</table>

設計圧力 (MPa)

<table>
<thead>
<tr>
<th></th>
<th>高圧部</th>
<th>低圧部</th>
<th>機器形式名</th>
<th>製造番号</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>2.80</td>
<td>1.40</td>
<td>RUA-J23602Y-A</td>
<td>0200W60022</td>
</tr>
</tbody>
</table>

関連法規

<table>
<thead>
<tr>
<th></th>
<th>形式</th>
<th>気 寒</th>
<th>回転数</th>
<th>压縮量</th>
<th>冷凍能力</th>
<th>原動機</th>
<th>台数</th>
<th>安全装置の種類</th>
<th>口径(mm)</th>
<th>作動圧力(MPa)</th>
<th>製作所名</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>(rpm)</td>
<td>(m³/h)</td>
<td>(トン)</td>
<td>(kW)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>A 半密閉</td>
<td>68.3</td>
<td>73.0</td>
<td>1440</td>
<td>138.58</td>
<td>16.3</td>
<td>30.0</td>
<td>2</td>
<td>DPH-2.70</td>
<td>DPL-0.098</td>
<td>東洋キャリア工業</td>
<td></td>
</tr>
</tbody>
</table>

容器

<table>
<thead>
<tr>
<th></th>
<th>品名</th>
<th>形式</th>
<th>外径(mm)×長さ×板厚×管板厚×管板厚×絞り数</th>
<th>製作所名</th>
<th>台数</th>
<th>安全装置の種類</th>
<th>口径(mm)</th>
<th>作動圧力(MPa)</th>
<th>溶接温度(℃)</th>
<th>主な材料</th>
</tr>
</thead>
<tbody>
<tr>
<td>B 水冷却器</td>
<td>幹式シェルチューブ式</td>
<td>342×95.2×19.0×37.5</td>
<td>東洋キャリア工業</td>
<td>1</td>
<td>———</td>
<td>SM400B</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>B 凝縮器</td>
<td>プレートフィンチューブ式</td>
<td>9.53×2600×3×40</td>
<td>東洋キャリア工業</td>
<td>4</td>
<td>———</td>
<td>C1220TS</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

容器の材料

<table>
<thead>
<tr>
<th></th>
<th>材料試験</th>
<th>溶接部機械試験</th>
<th>溶接部非破壊試験の種別</th>
<th>試験年月</th>
<th>試験場所</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>引張</td>
<td>自由曲げ</td>
<td>側曲げ</td>
<td>裏曲げ</td>
<td>衝撃</td>
</tr>
<tr>
<td>記号</td>
<td>製造番号</td>
<td>耐圧試験圧力(MPa)</td>
<td>気密試験圧力(MPa)</td>
<td>試験年月</td>
<td>試験場所</td>
</tr>
<tr>
<td>------</td>
<td>----------</td>
<td>------------------</td>
<td>------------------</td>
<td>----------</td>
<td>----------</td>
</tr>
<tr>
<td></td>
<td></td>
<td>高圧部</td>
<td>低圧部</td>
<td>高圧部</td>
<td>低圧部</td>
</tr>
<tr>
<td>A1</td>
<td>1696W02760</td>
<td>4.30</td>
<td>2.90</td>
<td>2.90</td>
<td>1.65</td>
</tr>
<tr>
<td>A2</td>
<td>1696W02756</td>
<td>4.30</td>
<td>2.90</td>
<td>2.90</td>
<td>1.65</td>
</tr>
<tr>
<td>a</td>
<td>1696W21737</td>
<td>4.30</td>
<td>-</td>
<td>2.90</td>
<td>-</td>
</tr>
</tbody>
</table>

機器の構成（記号で記入）

<table>
<thead>
<tr>
<th>機器</th>
<th>機器製造業者</th>
<th>記号</th>
<th>試験圧力(MPa)</th>
<th>試験年月</th>
<th>試験場所</th>
<th>種類</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>b1 A1-b2-a</td>
<td>2.90</td>
<td>1.50</td>
<td>99-12</td>
<td>岡山県津山市国分寺555</td>
</tr>
<tr>
<td></td>
<td></td>
<td>b2 A2-b4-a</td>
<td>2.90</td>
<td>1.50</td>
<td>99-12</td>
<td>岡山県津山市国分寺555</td>
</tr>
</tbody>
</table>

注）「安全装置の種類」は略記号を記載する。

- パネル安全弁：S、高低圧遮断スイッチ：DP、可溶栓：FP、油圧スイッチ：OP、断水リレー：WP
(2) 第一種高圧ガス製造者（法定冷凍能力50トン以上）の許可申請の手続き

下記の手続順序および必要書類等は一般的な場合で、都道府県によって異なる場合があります。

事前に各都道府県の高圧ガス担当課に問合せの上、手続きを進めてください。

第一種高圧ガス製造者…許可申請設備

（注1） 都道府県知事に申請、窓口は高圧ガス担当部署
提出書類に計画の内容、規制・基準に適合した審査、15〜21日後に許可ができる。
したがって、書類作成・設備計画にあたり、高圧ガス担当部署と十分に打合せを行うこと。
提出書類は（正）（副）2部、業者（控）必要に応じて作成。

（注2） 許可後工業者、計画内容に不適当があれば変更指示に従って施工する。

（注3） 手続きに関連した書類・証明書は、設備を発注するまで大切に保管すること。

（注4） 使用している製造設置・設備の修理や部品の交換を行うときは、変更許可などの手続きが必要である。

（注5） 申請の手続きは、事業所（冷凍取扱責任者以上の者）が自ら行い、工事施工者が代行することを避ける。

●手続きに必要な書類

(1) 高圧ガス製造許可申請書…申請は都道府県知事へ、所定の手数料が必要。
許可申請には所定の手数料が必要。
[以下の（2）〜（3）は許可申請への添付書類※]

(2) 役員名簿等※
法人の場合は会社登記簿謄本など、個人の場合は身分証明書など。

(3) 委任状※
工場長など事業所の長が、会社の代表者にかわって届出を行うとき必要。
関連法規

(4) 高圧ガス製造計画書
【以下は製造計画書に添付する計算書・図面など】

| a. 冷凍能力計算書 | a〜iは機器製造者が準備するもの (ユニット形の場合) |
| b. 設計強度等計算書 |
| c. 冷媒配管系統図 |
| d. 冷凍機構図、圧縮機、熱交換器図 |
| e. 電気配線図（インターロックを含む） |
| f. 機器試験合格証明書 | ※証明書類は出荷製品に添付 |
| g. 圧縮機耐圧、気密試験証明書 | 完成検査時に提出してもよい。 |
| h. 材料試験、耐圧、気密試験証明書（容器） |
| i. 安全弁検査証明書 |

【製造計画書に添付する計算書・図面など】
(5) 事業所付近の案内図（最寄駅からの道順）
(6) 製造施設の位置、付近の状況を示す図面
(7) 製造施設（機械室）内の機器配置図（配管や照明の位置、作業空間の寸法など）
(8) 配管（プライム、冷水、温水、冷却水）施工図、ダクトの設備図など

(9) 冷凍保安責任者、代理者選任届書
おもに冷凍設備の運転に関わる者の中から、正副2名を選任する。
（ユニット形では無資格でもよい）

(10) 危害予防規程届書
規程の様式（例）を参考に、事業所に即して作成する。

(9)（10）は運転開始の前までに準備、提出してよい。

以上を提出して書類審査がなされ、許可証が交付／受領して事工を着手できる。
工事が完了して、以下の手続きに進む。

(11) 製造施設完成検査申請書
…完成検査の申請には所定の手数料が必要。
完成検査事前チェックリスト
（注-6）検査官の立会い検査に先立ち、試運転を行い保安装置の確認などチェックリストに記録する。
完成検査に合格するまで設備の運転はできない。

(12) 高圧ガス製造開始届書
…完成検査証を受領（合格）して提出、冷凍設備の運転を行うことができる。
（注-7）高圧ガスによる災害の防止のため、保安教育計画を定め、事業所の従業員に保安教育を実施する必要がある（届け出は不要）。
関連法規

⑦ 製造施設の基準

法定冷凍能力20トン以上の冷凍設備が設置される場所およびその周辺施設に対して、法律上で種々の制約があります。特に許可申請時には厳しいチェックを受ける項目なので、下記の点について充分検討の上、設置場所、位置、構造を選定してください。また、製造施設の完成後も、この基準に基づいて保守管理し、維持しなければなりません。

各項目に関して、ここでは基本的な部分（一部高圧ガス保安協会の施設基準を含む）を取り上げますが、具体的には各都道府県高圧ガス担当窓口に相談の上、その指導を受けてください。

(1) 保守管理スペース

冷凍設備の周辺には、日常の運転操作および緊急応急規程に基づく保守点検ならびに非常時の処置等のために、最低次のスペースが必要です。

・ 機器の前面 1.2m以上 左右側面 0.5m以上
・ 頭 面 0.5m以上 天井高さ 2.0m以上

注）1. 上記の寸法は、配管・止め弁・柱等の突出部から測ること。
 (本体からの寸法ではないので注意のこと)
2. このスペース内を横切るダクト・配管などは、床下または床面より2m以上の高さとする
 こと。
3. 背面吸込形エアコンに接続するダクトは、立上げるなどしてできるだけ上記のスペースを
 確保すること。
4. 同一機械室に2台以上設置する場合の機器相互間の寸法は、上記の2倍とする必要はない。
 このスペースは、許可申請の際に許可の基準となり、完成検査時に計測されるので、充分余裕を持って設置してください。

(2) 出入口

機械室の出入口は、日常の保守管理および避難上支障のないよう次のようにする必要があります。

■2ヶ所以上設けること。うち1ヶ所は、直接屋外に面しているか、階段・通路・ロビーなど避
難上支障のない位置に設けること。
■他の出入口は、容易に脱出できる窓、または非常口などで代用することができる場合もある。
■前記の出入口・避難口などは、互いにできるだけ反対側に設けること。
(3) 警戒標
機械室の入口に、次のような最低3種類の警戒標を掲げる必要があります。

■ 高圧ガス製造施設 または 冷暖房機械室 など冷凍施設であることを示すもの。
■ 関係者以外立入禁止 など立入禁止を示すもの。
■ 火防厳禁 など火気の禁止を示すもの。

通常、都道府県の保安協会で作成した所定の警戒標などを掲げる必要があります。
大きさ、記載内容などにも規約があり、具体的には各都道府県の高圧ガス担当窓口と相談してください。出入口を2カ所以上設けた機械室では、それぞれに掲げること。
なお、ユニットには右のような警戒標を添付していますので、本体または機械室の出入口の見やすい位置に貼り付けてください。
法定冷凍能力50トン以上の第一種高圧ガス製造設備の警戒標（例）を右に示します。

(4) 危険時の処置書（危険予防規程…法定50トン以上の設備に限る）
非常の際にとるべき処置を記載した掲示を、機械室内に行う必要があります。
その内容は、危険予防規程の規範などにより、各都道府県で定めています。

(5) 換気
冷凍設備を設置する機械室は、冷媒ガスが漏洩したとき滞留しない構造とするため、次のような換気設備が必要です。（フルオロカーボンガスの場合を示します。）
■ 自然換気の場合
直接外気面した開口部で、法定冷凍能力1トン当たり0.03m³以上で面積のこと。
■ 強制換気の場合
法定冷凍能力1トン当たり0.4m³に換気の換気量を有する換気装置を設けること。

<table>
<thead>
<tr>
<th>法定冷凍能力</th>
<th>換気量（冷凍能力1トン当り）</th>
<th>東京都</th>
</tr>
</thead>
<tbody>
<tr>
<td>50トンまで</td>
<td>0.4m³/min以上</td>
<td>0.4m³/min以上</td>
</tr>
<tr>
<td>50トン以上100トン未満</td>
<td>0.4m³/min以上</td>
<td>0.4m³/min以上</td>
</tr>
<tr>
<td>100トン以上（Tは冷凍能力）</td>
<td>2×T⁰.⁷⁵m³/min以上</td>
<td>2×T⁰.⁶⁵m³/min以上</td>
</tr>
</tbody>
</table>

注) 1. 空気より重い冷媒ガス（フルオロカーボン）の場合の換気口は、床面近くの低い位置に設けること。
2. 自然換気口の開口部面積の不足分について、上記の強制換気量で補うことができます。
3. 設備の付近の状況によっては、各都道府県により自然換気は認められない場合もあります。
4. 換気装置のスイッチは、出入口の外から発動できるようにすること。
（6）火気設備との距離

「冷凍設備は火気の付近にないこと」の規則に基づき、ボイラなどとは別室に設置することが原則です。同室に設置する場合には次の距離を取ることが必要となります。

火気設備の種類 | 左と同等の火気設備 | 冷凍機との距離
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>大形火気設備</td>
<td>伝熱面積14㎡を超える温水ボイラまたは同等の火気設備</td>
<td>定格熱出力582kWを超える火気設備</td>
</tr>
<tr>
<td></td>
<td>1.5m以上または防火壁+0.8m以上</td>
<td>法定50トン未満</td>
</tr>
<tr>
<td></td>
<td>または防火壁+2m以上</td>
<td>法定50トン以上</td>
</tr>
<tr>
<td>中形火気設備</td>
<td>伝熱面積8㎡を超える14㎡以下の温水ボイラまたは同等の火気設備</td>
<td>定格熱出力349kWを超える582kW以下の火気設備</td>
</tr>
<tr>
<td></td>
<td>1m以上または防火壁+0.5m以上</td>
<td>法定50トン未満</td>
</tr>
<tr>
<td></td>
<td>または防火壁+1m以上</td>
<td>法定50トン以上</td>
</tr>
<tr>
<td>小形火気設備</td>
<td>伝熱面積8㎡以下の温水ボイラまたは同等の火気設備</td>
<td>定格熱出力349kW以下の火気設備</td>
</tr>
<tr>
<td></td>
<td>1m以上</td>
<td>法定50トン未満</td>
</tr>
<tr>
<td></td>
<td>1m以上</td>
<td>法定50トン以上</td>
</tr>
</tbody>
</table>

注）1. 防火壁は厚さ10mm以上の鋼板不燃材で、強度の大きなもの、鋼板の場合は厚さ1.5mm以上とする。
2. ボイラ等の火口面を冷凍機の方向に設置しないこと。ただし、防火壁があればこの限りではない。
3. 防火壁と冷凍機との間には保守管理スペースをとる。
4. 防火壁に出入口を設ける場合は自閉式扉を設ける。
5. パッケージおよびチラリ内の電気ヒーターの組み込みは、規制を受けることがあるので充分注意してください。

（7）安全弁または溶栓の放出管

都道府県により、またその施設の状況により、安全弁または溶栓に放出管を設ける必要があります。

放出管を設ける場合は、次のような事項に注意してください。

放出管	安全弁の口径以上、溶栓では口径の1.5倍以上で金属製のもの。（2ヶ所以上の安全弁を集合して放出する場合には、合計の断面積に相当するサイズとする。）
放出場所	直接屋外まで配管することが望ましいが、困難な時は排気ダクト内でよい場合もある。
安全弁の元弁	常時全開にしておくと共に常時開 および操作禁止 の表示をすること。

（8）照 明

必要な照度を確保する必要があります。

| 必要な照度の目安 | 制御盤・監視盤等の前面……100ルックス以上 |
| その他の冷凍機器周囲……60ルックス以上 |
| その他の場所…………………50ルックス以上 |
（9）冷却水、冷温水およびファンの運転

■ 水冷式冷凍設備の場合……冷却水ポンプと圧縮機とのインターロック

■ 空冷式冷凍設備の場合……冷温水ポンプと圧縮機とのインターロックおよび、空冷式凝縮器の送風機が運転されなければ、圧縮機が運転されないインターロック

注）当社製品では、冷却水ポンプまたは、冷温水ポンプとのインターロック用端子を通常設けておりますので、ポンプの運転で、「閉」なる接点を必ず接続してください。

また、冷却水ポンプ（または冷温水ポンプ）の電源を切った時にも、圧縮機が停止する必要がありますので、ポンプの制御回路は、ポンプの電源開閉器の2次側から取らなければならないません。

空冷式凝縮器の送風機との運動機構については、当社製品はすでに機内に組込み済みです。

（10）止め弁などの表示について

冷凍設備に設けた止め弁には「作業員が適切に操作できるような処置」として、次の表示が必要です。

保安上重大な影響を与える弁用

冷媒用弁止め

流体名、流れの方向
（冷媒用）

● 保安上重要なバルブ

保安上重要なバルブには、誤操作などによって事故等が起こらないよう防止措置をとることが義務付けられています。これに該当するバルブは冷却水、冷温水配管のバルブ、圧縮機吐出バルブ等です。

バルブの誤操作防止措置例

<table>
<thead>
<tr>
<th>保安上重大なバルブの種類</th>
<th>開閉方向</th>
<th>開閉状態</th>
<th>流体の種類および流れ方向の配管上の表示</th>
<th>施錠・封印</th>
</tr>
</thead>
<tbody>
<tr>
<td>压力区分バルブ</td>
<td>○</td>
<td>○</td>
<td>○</td>
<td>△</td>
</tr>
<tr>
<td>安全弁</td>
<td>－</td>
<td>－</td>
<td>－</td>
<td>－</td>
</tr>
<tr>
<td>安全弁の元弁</td>
<td>○</td>
<td>○</td>
<td>○</td>
<td>－</td>
</tr>
<tr>
<td>電磁弁</td>
<td>－</td>
<td>－</td>
<td>－</td>
<td>－</td>
</tr>
<tr>
<td>緊急放弁</td>
<td>○</td>
<td>○</td>
<td>○</td>
<td>－</td>
</tr>
<tr>
<td>圧縮機吐出配管止め弁</td>
<td>○</td>
<td>○</td>
<td>○</td>
<td>△</td>
</tr>
<tr>
<td>冷却水止め弁</td>
<td>○</td>
<td>○</td>
<td>○</td>
<td>△</td>
</tr>
<tr>
<td>プライシン止め弁</td>
<td>○</td>
<td>○</td>
<td>○</td>
<td>△</td>
</tr>
<tr>
<td>ドレン弁等</td>
<td>○</td>
<td>○</td>
<td>△</td>
<td>△</td>
</tr>
<tr>
<td>上記以外のバルブ等</td>
<td>○</td>
<td>－</td>
<td>－</td>
<td>－</td>
</tr>
</tbody>
</table>

注）1. △印＝行う △印＝行わない
2. △印＝必要に応じて行う。なお、施錠・封印に代えハンドル取り外しや針金等で結紮することも良い。
3. 安全弁の元弁には封印を取り付ける。
4. 操作ボタン等を使用することなく開閉する自動制御弁は表示の必要がない。
（11）機械室平面図（記載例）（フルオロカーボンガスの場合）
⑧ 用語の説明

（1）ユニット形冷凍装置

冷凍保安規則で定めるいわゆる“ユニット形”的ものは第一種製造者であっても冷凍保安責任者（有資格者）を選任しなくてもよい。ただし、取扱責任者（無資格でも可）を選任する必要があります。

ユニット形とは、以下の条件に適合する冷凍設備をいうです。

（注記）規程の上限値300トンは平成16年12月の改正で削除されました。

＜1＞機器製造業者の製造事業所において次のイからハまでに掲げる事項が行われるものであること。

イ 冷媒設備及び圧縮機用原動機を用い架台上に一体に組立てること。

ロ 冷媒ガスの配管の取付けを完了し、試験を行って保安の状況を確認すること。

ハ 冷媒ガスを封入し、試運転を行って保安の状況を確認すること。

＜2＞冷凍設備の使用に当たっては冷媒ガスの止め弁の操作を必要としないものであること。

＜3＞使用場所に分割して搬入される場合には、冷媒設備に溶接又は切断を伴う工事を施すことなしに再組立てをし、かつ、直ちに冷凍の用に供し得るものであること。

＜4＞冷凍設備に使用、改善等の工事を施した場合においては、設置台数、取付位置及び外形寸法並びに圧縮機用原動機の規格出力は、1の段階での設備と同一であること。（冷媒設備の部品の種類にあっては、1の段階での設備と同等であること。）

（2）冷凍保安責任者および代理者の選任

いわゆる“ユニット形”以外の第一種製造者は、製造施設の区分により、つぎの有資格者（冷凍機械責任者免状取得者）を選任する必要があります。

<table>
<thead>
<tr>
<th>製造施設の区分</th>
<th>必要な責任者</th>
<th>責任者の数</th>
</tr>
</thead>
<tbody>
<tr>
<td>1日の冷凍能力が300トン以上のもの</td>
<td>第1種冷凍機械責任者</td>
<td>正および代理者各1名</td>
</tr>
<tr>
<td>100トン以上300トン未満</td>
<td>第1種冷凍機械責任者 または第2種冷凍機械責任者</td>
<td></td>
</tr>
<tr>
<td>50トン以上100トン未満</td>
<td>第1種冷凍機械責任者 または第2種冷凍機械責任者 または第3種冷凍機械責任者</td>
<td></td>
</tr>
</tbody>
</table>

★必要な責任者をメンテナンス会社との契約により確保する場合は、申請時に①契約書 ②出向命令書をそえる必要があります。
(8) フロン回収破壊法

① 目的
「この法律は、人類共通の課題であるオゾン層の保護及び地球温暖化の防止に積極的に取り組むことが重要であることにかんがみ、オゾン層を破壊し又は地球温暖化に深刻な影響を与えたらすフロン類の大気中への排出を抑制するため、特定製品からのフロン類の回収及びその破壊の促進等に関する指針及び事業者の責務等を定めるとともに、特定製品に使用されているフロン類の回収及び破壊の実施を確保するための措置等を講じ、もって現在及び将来の国民の健康で文化的な生活の確保に寄与するとともに人類の福祉に貢献することを目的とする。」（法第1条抜粋）

② 対象物質
本法が規制対象とする物質は、① CFC、② HCFC、③ HFC です。

③ 対象製品
(1) 第1種特定製品→業務用エアコン・冷蔵機器及び冷凍機器
(2) 第2種特定製品→カーエアコン

④ 第1種特定製品のフロン回収破壊法の仕組み

[図解]
フロン類
処理費用
（回収・運搬・破壊費用）
破壊費用
都道府県知事
経済産業大臣
環境大臣
許可
等回収率
通知
回収業者等
指標等
回収業者等
指標等
第1種フロン類回収業者
第1種フロン類回収業者
業務用冷凍空調機器
（第1種特定製品）
改正条項の概要

1. フロン類の回収が必要な場合の拡大
 ○ 業務用冷凍空調機器を廃棄する場合に加え、機器中の部品等のリサイクルを目的としてリサイクル業者等に譲渡する場合についても、フロン類回収業者へフロン類の引渡しを義務化する。（第2条第5項、第19条）

2. 業務用冷凍空調機器を整備する際の対策の強化
 ○ 業務用冷凍空調機器を廃棄する場合に加え、整備する場合についても、フロン類の排出抑制のための必要な措置を講ずることを、事業者及び国民の責務とする。（第4条、第6条）
 ○ 業務用冷凍空調機器の整備を行う者は、フロン類の回収作業を都道府県知事に登録されたフロン類回収業者に委託しなければならないこととし、フロン類回収業者は、回収基準に従ってフロン類を回収しなければならないこととする。（第18条の2）

3. 解体される建物中における業務用冷凍空調機器の設置の有無の確認及び説明
 ○ 建物解体工事の元請業者は、その建物に、フロン類を含む業務用冷凍空調機器が設置されていないかどうかを確認し、その結果を工事発注者に説明しなければならないものとし、工事発注者はその確認作業に協力しなければならないものとする。（第19条の2）

4. フロン類の引渡しの委託等を書面で管理する制度（フロン類引渡工程管理制度）の新設
 ○ 業務用冷凍空調機器の廃棄等を行うようとする者は、フロン類の引渡しを他の者に委託する場合には、その業務を受託する者に、委託確認書を交付しなければならず、その受託者は、委託確認書をフロン類回収業者に渡さなければならることとする。（第19条の3）
 ○ フロン類回収業者は、フロン類を引き取ったときは、業務用冷凍空調機器の廃棄等を行うようとする者及びフロン類引渡業務を受託した者に対し、引取証明書を交付することとする。（第20条の2）

5. 担保措置の強化等
 ○ 都道府県知事は、フロン類の回収業者に加えて、業務用冷凍空調機器の廃棄等を行おうとする者など他の義務者に対して、その義務の履行を担保するため、新たに、指導、助言、勧告、命令等の措置を講ずることができることとする。（第23条、第24条、第43条、第44条及び第45条）

6. 施行期日等
 ○ 施行期日は、平成19年10月1日とする。（附則第1条）
5. 第1種特定製品のフロン類の回収・破壊の流れ

業務用冷凍倉庫機器を廃棄する際は、都道府県の登録を受けた「第1種フロン類回収業者」に引き渡さなければならない。また、回収・運搬・破壊に要する適正な料金を支払わなければなりません。

フロン類の回収を行う際は、回収に関する規定を遵守しなければなりません。また、フロン類の運搬を行う際は、運搬に関する規定を遵守しなければなりません。

フロン類を破壊する際は破壊に関する規定に従ってフロン類を破壊しなければなりません（無害化処理）。

6. 主要内容

(1) 何人もみだりに特定製品からフロン類を放出してはなりません。
 (罰則：1年以下の懲役または50万円以下の罰金)

(2) 製造業者等は特定製品に、フロン類放出禁止、フロン類の回収の必要性、充填したフロン類の種類や量等についての表示を行わなければなりません。

(3) 整備・修理の際にフロン類の回収を行う場合も、回収に関する規定等を遵守しなければなりません。

7. 参考：家庭用ルームエアコン等の冷媒回収（家電リサイクル法）

使用済エアコンの引き取り時には冷媒の室外機へのポンプダウン又は冷媒回収が必要です。
(9) 補助電気ヒーターの取り付けに関する基準

① 天井埋込形ダクトエアコンでの電気ヒーターの取付け上の注意

● 東京都の場合（東京消防庁の見解）

 東京都火災予防条例「火を使用する設備等の技術基準」の第3、温風暖房機の4項（ウ）の設置要領が適用されます。

 従って下図のように建造物からの距離を保つ必要があります。又、電気ヒーターを有効に点検できる位置に1辺60cm以上の点検口を設ける必要があります。

 建造物との距離

（注）上記設置要領が満足できない場合は、事前に所轄の消防署へご相談ください。

② ダクト接続時の規制（都条例第3条第1項11号）

● ダクト接続の場合はあらかじめ消防庁に届出が必要です。（火を使用する設備等の設置届出書）

● ダクトは不燃材料で作り防熱や支持も不燃材料とします。

● ダクトには据付時に1回調節するだけの風量調節ダンパーおよびダクトの温風暖房機に近接する部分には防火ダンパーを設けます。

● 防火ダンパーについて

 暖房機に近接する部分は温風暖房機本体の接続部分から2m以内の範囲でできる限り近い部分をいう。

 なお、ダクトの長さが2m未満のもの又は暖房機から5m以内のダクト部分に不燃区画のための防火ダンパーが設けられている場合には、防火ダンパーを設けないことができる。

（東京防災指導協会の予防事務審査・検査基準、平成7年6月発行）